
ar
X

iv
:1

30
1.

34
79

v3
  [

m
at

h.
D

G
] 

 2
5 

M
ar

 2
01

5

DEFORMATIONS OF KILLING SPINORS ON SASAKIAN AND

3-SASAKIAN MANIFOLDS

CRAIG VAN COEVERING

Abstract. We consider some natural infinitesimal Einstein deformations on
Sasakian and 3-Sasakian manifolds. Some of these are infinitesimal deforma-
tions of Killing spinors and further some integrate to actual Killing spinor de-
formations. In particular, on 3-Sasakian 7 manifolds these yield infinitesimal
Einstein deformations preserving 2, 1, or none of the 3 independent Killing
spinors. Toric 3-Sasakian manifolds provide non-trivial examples with inte-
grable deformation preserving precisely 2 Killing spinors. Thus in contrast to
the case of parallel spinors the dimension of Killing spinors is not preserved
under Einstein deformations but is only upper semi-continuous.

Introduction

Let M be an n-dimensional Riemannian spin manifold with spinor bundle Σ. A
Killing spinor is a non-trivial section ψ ∈ Γ(Σ) with

(1) ∇Xψ = cX · ψ,
for some constant c, where ∇ is the Levi-Civita connection, X any tangent vector,
and X ·ψ denotes Clifford multiplication. An easy computation shows that Ricg =
4(n − 1)c2g. Thus c must be either purely imaginary in which case M is non-
compact, c = 0 with ψ a parallel spinor and M is Ricci-flat, or c is real and M
is positive Einstein and compact assuming completeness. In the latter case ψ is a
real Killing spinor. We will only consider real Killing spinors with c 6= 0. Since c
is rescaled by homotheties of the metric, only its sign is of significance. We denote
by N+ (respectively N−) the dimension of the space of Killing spinors with c > 0
(respectively c < 0).

Killing spinors are of interest in physics in supergravity and string theories [11].
But they are also of interest purely mathematically. See [3] for a survey. Much
work has been done in classifying manifolds admitting a Killing spinor. C. Bär [2]
classified simply connected manifolds admitting a real Killing spinor in terms of the
underlying geometry of (M, g). The classification is given in terms of the holonomy
of the metric cone (C(M), g), C(M) = R+×M, g = dr2+r2g. The argument in [2]
is essentially that the connection ∇X − cX on Σ is identified with the Levi-Civita
connection ∇ of g on Σ (the spin bundle of C(M) when n is even, and half-spin
bundle when n is odd). Then the classification is in terms of irreducible holonomies
admitting a parallel spinors [41]. See Table 1 for the classification. Therefore, just
as for the irreducible reduced Ricci-flat holonomies there are two cases occurring in
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Table 1. real Killing spinors

dimM N+ N− Hol(C(M)) geometry

n 2⌊
n
2 ⌋ 2⌊

n
2 ⌋ Id n-sphere

4m− 1 2 0 SU(2m) Sasaki-Einstein
4m+ 1 1 1 SU(2m+ 1) Sasaki-Einstein
4m− 1 m+1 0 Sp(m) 3-Sasakian

6 1 1 G2 nearly Kähler
7 1 0 Spin(7) weak G2

infinitely many dimensions, the Sasaki-Einstein and 3-Sasakian manifolds, and two
exceptional cases, nearly Kähler and weak G2 in dimensions 6 and 7 respectively.

Nearly Kähler structures, introduced by A. Gray in the context of weak holo-
nomy, are almost Hermitian structures (g, J, ω) with∇XJ(X) = 0 for anyX ∈ TM .
Note that for a proper nearly Kähler structure, i.e. not Kähler, the almost complex
structure J is not integrable and dω 6= 0. When n = 6 the torsion of the SU(3)-
structure is contained in a 1-dimensional subbundle. In [31] it is shown that every
nearly Kähler manifold is locally the Riemannian product of Kähler manifolds,
3-symmetric spaces, twistor spaces over positive quaternion-Kähler manifolds and
6-dimensional nearly Kähler manifolds. Thus most questions about nearly Kähler
manifolds reduces to proper 6-dimensional nearly Kähler manifolds.

A weak G2 manifold is a 7-manifold with a vector cross product coming from
the imaginary octonians, or equivalently a stable 3-form σ ∈ Ω3 with dσ = −λ ⋆ σ
with λ 6= 0 a constant. The form σ defines a reduction of the structure group of M
to G2 and thus a metric g, as G2 ⊂ SO(7), which is Einstein with scalar curvature
s = 21

8 λ
2. Again, the torsion of the G-structure lies in a 1-dimensional subbundle.

See [16] for results on weak G2 manifolds including a classification of homogeneous
examples.

Most interesting is perhaps n = 7 for which, when M is simply connected and
not of constant curvature, N+ = 1, 2, or 3, in which case (M, g) is said to be of type
1, 2, or 3 respectively. Recall that the spinor representation S of Spin(7) is real,
S = SR ⊗ C. Thus M has a real spinor bundle ΣR, and the space of solutions to
(1) is the complexification of solutions in Γ(ΣR). Each section ψ ∈ Γ(ΣR) defines a
G2-structure on M with stable 3-form σψ , and there is a bijective correspondence
between sections of P(ΣR) and G2-structures with metric g and given orientation.
If ψ is a representative of such a section with |ψ| = 1, then σψ defines a weak
G2-structure, dσψ = −λ ⋆ σψ , if and only if ψ satisfies (1), with λ = 8c. If (M, g)
is type 1, then there is a unique 3-form inducing the given metric and orientation.
If it is of type 2, then (M, g) is Sasaki-Einstein but not 3-Sasakian and there is
a space of compatible 3-forms parameterized by RP

1. And if it is of type 3, then
(M, g) is 3-Sasakian and has a space of compatible 3-forms parameterized by RP

2.
See [16].

Note that an easy computation of the curvature of the warped product shows
that (C(M), g) is Ricci-flat if and only if (M, g) is Einstein with Ricg = (n − 1)g.
Thus the classification as in Table 1 gives a natural scaling in which c = ± 1

2 in (1)
and s = n(n− 1).

We consider deformations of the Killing spinor equation (1) under deformations
of g, both infinitesimal and genuine. As solutions to (1) imply that (M, g) is
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Einstein we consider Einstein deformations. The beginnings of a general theory of
deformations of Killing spinors was developed by M. Wang [42], making use of the
work of J.-P. Bourguignon and P. Gauduchon [6] on the variations of spinors under
metric variations.

More recently there has been some work on the two exceptional cases in Table 1.
In [28] and [30] it is shown that the space of infinitesimal Einstein deformations of
a proper nearly Kähler 6-manifold consists of eigenspaces of the Laplace operator
∆ restricted to the space E of co-closed primitive (1, 1)-forms. If E(λ) denotes the
λ-eigenspace of ∆ restricted to E, then the space of essential infinitesimal Einstein
deformations is E(2) ⊕ E(6) ⊕ E(12). The space of infinitesimal deformations of
nearly Kähler structures is E(12). Besides S6, which has no Einstein deformations
the only examples of proper nearly Kähler 6-manifolds are 3-symmetric spaces,
CP

3 = SO(5)/U(2), F (1, 2) = SU(3)/U(1)×U(1), and S3×S3 = SU(2)×SU(2)×
SU(2)/∆. In [29] it is shown that the nearly Kähler structures on CP

3 and S3×S3

have no infinitesimal Einstein deformations, and on F (1, 2) E(2) and E(6) vanish
while E(12) is an 8-dimensional space.

Similar results are known for weak G2 manifolds. In [1] a similar decomposition
of the infinitesimal Einstein deformations on a weak G2 manifold are given. First
recall that a G2-structure induces a decomposition of the 3-forms into irreducible
G2-representations Λ

3 = Λ3
1⊕Λ3

7⊕Λ3
27. And there is a map ι : S2

0(T
∗) → Λ3, which

on a decomposable element α⊙β is ι(α⊙β) = α∧ (β y σ)+β∧ (α y σ), which is an
isomorphism onto Λ3

27. It is proved in [1] that the essential infinitesimal Einstein
deformations is given by the direct sum

E(16)⊕ E(4)⊕ E(8),

where E(16) = {γ ∈ Ω3
27| ⋆ dγ = −4γ}, E(4) = {γ ∈ Ω3

27| ⋆ dγ = 2γ}, and E(8) =
{γ ∈ Ω3

27|dd∗γ = 8γ}. The notation E(λ) indicates that these are subspaces of the
λ-eigenspace of ∆. The space E(16) is the subspace of infinitesimal deformations
of weak G2-structures, or more precisely, those not fixing the metric and deforming
the Killing spinor. This space is computed on the normal homogeneous examples:
the isotropy irreducible space SO(5)/ SO(3), the pinched metric on S7, and the
second Einstein metric on the Aloff-Wallach space N(1, 1) = SU(3)/U(1). The
first two cases have no infinitesimal Einstein deformations, while for the third the
infinitesimal Einstein deformations correspond to E(16) which is 8-dimensional.

These results might lead one to suspect that there might be some stability for
Killing spinors under Einstein deformations, either infinitesimal or integrable. Fur-
thermore, for the case c = 0 in (1), i.e. parallel spinors, there are strong stability
results [42, 33]. Recall that a simply-connected, spin, irreducible Riemannian man-
ifold (M, g) admits a parallel spinor if and only if the holonomy Hol(g) = G where
G = SU(m), Sp(m),G2, or Spin(7). Define a G-manifold to be a connected oriented
manifold of dimension 2m, 4m, 7 or 8 respectively with a torsion-free G-structure
with G from this list. This means Hol(g) ⊆ G. Thus a G-manifold M is Ricci-flat,
and we define WG to be the moduli space of torsion-free G-structures on M , MG

the moduli space of G-metrics, i.e. metrics induced by a torsion-free G-structure,
and M0 the moduli space of Ricci-flat metrics on M . Here the moduli spaces are
defined by quotienting by diffeomorphisms isotopic to the identity. We have the
following result of J. Nordström extending similar results of M. Wang [42].
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Theorem 1 ([33]). Let M be a compact G-manifold with G = SU(m), Sp(m),G2,
or Spin(7). Then MG is open in M0, actually a union of connected components.
Furthermore, MG is a smooth manifold and the natural map

m : WG → MG

that sends a torsion-free G-structure to the metric it defines is a submersion.

This article will show that there is no analogous result for Killing spinors. Un-
der Einstein deformations N+, N− are merely upper semi-continuous and can drop
under infinitesimal and integrable Einstein deformations. In particular, the toric
3-Sasakian 7-manifolds of [9] have interesting infinitesimal Einstein deformations.
Let H1(A•) be the first cohomology of the complex (30), that is the first order
deformations of the complex structure of the Reeb foliation Fξ. We know that
dimCH

1(A•) = b2(M)− 1 if (M, g) is a toric 3-Sasakian 7-manifold [38].

Theorem 2. Let (M, g) be a 3-Sasakian 7-manifold with dimCH
1(A•) > 0, e.g.

a toric 3-Sasakian 7-manifold with b2(M) ≥ 2. Thus (M, g) has three linearly
independent Killing spinors. Then there exist infinitesimal Einstein deformations
of g preserving two, one, and zero dimensional subspaces of the Killing spinors.

It is unknown whether the infinitesimal Einstein deformations preserving only
1-dimensional subspaces of Killing spinors or none are integrable. But in Section 3
some infinitesimal Einstein deformations are proved to be integrable. For example
the infinitesimal deformations of a toric 3-Sasakian 7-manifold in the theorem pre-
serving a 2-dimensional subspace of Killing spinors can be shown to be integrable.

Theorem 3. Let (M, g) be a toric 3-Sasakian 7-manifold, so N+ = 3. There exists
an effective space U ⊂ Cb2(M)−1 of Einstein deformations of g = g0. For t ∈ U and
t 6= 0, gt is Sasaki-Einstein but not 3-Sasakian. Thus gt, t 6= 0, admits only a two
dimensional space of Killing spinors (N+ = 2, N− = 0).

We also prove in Theorem 3.3 that certain infinitesimal Einstein deformations
on a general 3-Sasakian manifold are integrable. In Section 4.1 we see that this has
implications for the local premoduli space of Einstein metrics.

Corollary 4. Suppose (M, g) is 3-Sasakian with dimCH
1(A•) > 0, e.g. a toric 3-

Sasakian 7-manifold with b2(M) ≥ 2. Then either there exist Einstein deformations
of g preserving no Killing spinors, or the Einstein premoduli space is singular.

In Section 1 we review necessary background on the deformations of Einstein
metrics, the variation of spin structures, and deformations of Killing spinors. In
Section 2 we show that infinitesimal deformations of the transversal complex struc-
ture of a Sasaki-Einstein manifold give infinitesimal Einstein deformations. We
then give the basic results on these deformations regarding the behavior of Killing
spinors, on Sasaki-Einstein and 3-Sasakian manifolds. In Section 3 we give some
results on when these infinitesimal Einstein deformations integrate to genuine Ein-
stein deformations. In Section 4.1 we study the space of these infinitesimal Einstein
deformations on a 3-Sasakian manifold more closely, and we prove Theorem 2, The-
orem 3 and Corollary 4. In Section 4.2 the examples of toric 3-Sasakian 7-manifolds
from [9] provide non-trivial examples of the above results.

Acknowledgements. I would like to thank the Max Planck Institute for Mathe-
matics for their hospitality and excellent research environment. Most of the research
for this article was done during a visit during the academic year 2011-2012.
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1. Preliminaries

1.1. Spinors. We review the explicit construction of the spin representations via
explicit representations of the Clifford algebras Cl(n), For more details see [23]
and [3]. These representation will give the complex representations of the complex
Clifford algebras Cl(n) = Cl(n)⊗C. Suppose V is a real vector space of dimension
n = 2m with a metric g and compatible almost complex structure I : V → V . We
have the decomposition V ⊗ C = V 1,0 ⊕ V 0,1, and the spinor space is

S(V ) := Λ∗,0V = Λ∗V 1,0.

The representation c : Cl(V ) → End(S(V )) is defined by its action on V ⊗ C. For

v ∈ V 1,0 define c(v) :=
√
2v ∧ ·, and for w ∈ V 0,1 define c(w) := −

√
2w y ·, where

the contraction is induced by the metric g on V extended complex bilinearly.
Recall we have the splitting Cl(V ) = Cl0(V )⊕Cl1(V ) into even and odd elements

making Cl(V ) into a superalgebra, that is

Clr(V ) · Cls(V ) ⊆ Clt(V ) with t = r + s mod 2.

We have Pin(n) ⊂ Cl(n), where Pin(n) is the universal cover of O(n), and Spin(n) ⊂
Cl0(n) is the universal cover of SO(n).

The representation has a splitting preserved by the superalgebra structure of
Cl(V )

(2) S(V ) = S2m = S
+
2m ⊕ S

−
2m,

that is Cl0(V ) · S±
2m ⊆ S

±
2m while Cl1(V ) · S±

2m ⊆ S
∓
2m. The restriction of S(V ) to

Spin(2m) is the spin representation, which splits into components in (2) which are
irreducible.

As in [41], we define S
+
2m to be the half-spin representation with highest weight

1
2 (x1 + · · ·+ xm), while S

−
2m has highest weight 1

2 (x1 + · · ·+ xm−1 − xm), with the
usual choice of fundamental weights. If {e1, . . . , e2m} is an orthonormal basis of V ,

then S
±
2m are the +1 and −1 eigenspaces of ωC =

(√
−1

)m2+2m
e1 · · · e2m.

Remark 1.1. Note that this differs from the convention in [23], where S
±
2m are

defined as the +1 and −1 eigenspaces of ωC =
(√

−1
)m
e1 · · · e2m, by a factor of

(−1)
m(m+1)

2 .
Explicitly, we have

S
+
2m = Λm,0V ⊕ Λm−2,0V ⊕ · · · ,

S
−
2m = Λm−1,0V ⊕ Λm−3,0V ⊕ · · · .

(3)

For the odd dimensional case, n = 2m+ 1, let {e1, . . . , e2m} be an orthonormal
basis of V and define V ′ = V ⊕ Re2m+1, with e2m+1 unit length and orthogonal
to V . We define c′ : Cl(V ′) → End(S(V )) as follows. If v ∈ V we let c′(v) :=

c(v) ∈ End(S(V )) as above, and we define c′(e2m+1) := −(−1)
m+1

2 c(e1 · · · e2m) ∈
End(S(V )). Note that Cl(V ′) = Cl(2m+ 1) has two irreducible complex represen-
tations, each of dimension 2m, and changing the sign of c′(e2m+1) gives the other
representation of Cl(V ′).

Alternatively, let V = V0 ⊕ Re2m be an orthogonal sum. Then

(4) Cl(V0)
γ∼= Cl0(V )

c−→ End(S±(V )),
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where the isomorphism γ : Cl(V0)
γ∼= Cl0(V ) is given by ei 7→ ei · e2m. The choice

of half-spin representations S±(V ) gives the two representations of Cl(V0) denoted
by S

±
2m−1. The restrictions of S

±
2m−1 to Cl0(V0) are identical, thus restricting to

Spin(2m − 1) ⊂ Cl0(V0) gives the complex spin representation S2m−1, without a
superscript.

Let (M, g) be an oriented Riemannian manifold with a spin structure. We
have the principal bundle of orthonormal frames LSO(n) with the spin structure a
Spin(n) principal bundle LSpin(n) with 2-fold cover θ : LSpin(n) → LSO(n), restrict-
ing to the 2-fold cover Spin(n) → SO(n) on each fiber. The spin bundle is Σ =
LSpin(n)×Spin(n)Sn. If n = 2m then Σ = Σ+⊕Σ−, where Σ± = LSpin(n)×Spin(n)S

±
n .

When n is odd there is a unique spinor bundle Σ, although there are two choices
as a bundle of Clifford modules over Cl(TM).

Since Killing spinors correspond to a holonomy reduction we will make use of
the decomposition of some restrictions of the spinor representation Sn. Let µm
be the usual representation of SU(m) ⊂ SO(2m) on Cm. Since SU(m) is simply
connected, SU(m) ⊂ SO(2m) lifts to an embedding SU(m) ⊂ Spin(2m) under
θ : Spin(2m) → SO(2m). We have from our conventions

(5)
S
+
2m|SU(m) = Λmµm ⊕ Λm−2µm ⊕ · · ·

S
−
2m|SU(m) = Λm−1µm ⊕ Λm−3µm ⊕ · · ·

We will need to consider the spin representation restricted to sp(m) ⊕ sp(1) ⊂
SO(4m). Let ν2m be the complex representation of Sp(m) given by Sp(m) ⊂
SU(2m). Contraction by the symplectic form gives Λkν2m = Λk ⊕ Λk−2ν2m, for
2 ≥ k ≥ m, as Sp(m)-representations where Λk is the irreducible representation of
Sp(m) with highest weight x1 + · · ·+ xk. It is an elementary result (see [10, Prop.
4.14])that an irreducible representation of Sp(m)×Sp(1) is of the form V ⊗̂W where
V and W are irreducible representations of Sp(m) and Sp(1) respectively. A little
more work shows that

(6)
S
+
4m|sp(m)⊕sp(1) = Λ0⊗̂γm ⊕ Λ2⊗̂γm−2 ⊕ · · ·

S
−
4m|sp(m)⊕sp(1) = Λ1⊗̂γm−1 ⊕ Λ3⊗̂γm−3 ⊕ · · ·

where γk = Sk(µ2) is the irreducible representation of SU(2) = Sp(1) of dimension
k + 1. It follows from (6) that for m even the inclusion Sp(m) · Sp(1) = Sp(m) ×
Sp(1)/Z2 ⊂ SO(4m) lifts under θ : Spin(4m) → SO(4m) to Sp(m) × Sp(1)/Z2 ⊂
Spin(4m). While when m is odd θ−1(Sp(m) · Sp(1)) = Sp(m)× Sp(1) ⊂ Spin(4m),
which contains (−I,−1) = −1 ∈ Spin(4m).

1.2. Deformation of Einstein metrics and Killing spinors.

1.2.1. Deformation of Einstein metrics. We describe what we will need from the
theory of deformations of Einstein metrics and deformations of Killing spinors. For
more on the deformation theory of Einstein metrics see [5, ch. 12] or [20]. See [6]
for the apparatus for working with spinors under metric variations, and see [42] for
this applied to the Killing spinor equation. In this article M denotes a compact
connected n-dimensional manifold.

Definition 1.2. Let g be an Einstein metric on M . A family gt of Einstein metrics
on M of fixed volume with g0 = g depending smoothly on t ∈ U ⊂ Rk is an Einstein
deformation of g.



DEFORMATIONS OF KILLING SPINORS 7

Because Einstein metrics are critical points of the total scalar curvature func-
tional g 7→

∫

M
sg µg restricted to metrics of a fixed volume, a deformation of Ein-

stein metrics has fixed scalar curvature s = sgt . Thus

(7) Ricgt = λgt,

where λ = s
n
. We will consider positive scalar curvature Einstein metrics, and it

will be convenient for us to assume λ = n− 1.
Let Mc be the space of Riemannian metrics onM of fixed volume c. This is acted

upon by the diffeomorphism group D . A local description of the quotient Mc/D
is given by D. Ebin’s Slice Theorem [12]. The tangent space to Mc at g denoted
by TgMc consists of symmetric 2 tensors h ∈ Γ

(

S2 T ∗M
)

with
∫

M
trhµg = 0. The

tangent space to the orbit D∗g consists of all Lie derivatives LXg = 2δ∗gX
♭, where

X♭ is the 1-form dual to a the vector field X and

(8) (δ∗gX
♭)ij =

1

2

(

∇iX
♭
j +∇jX

♭
i

)

,

with ∇ the Levi-Civita connection. One can show that Im δ∗g ⊂ TgMc is closed,
and

(9) TgMc = Im δ∗g ⊕
(

TgMc ∩ ker δ
)

,

where (δgh)i = −∇jhji is adjoint to δ
∗
g .

Let h = dgt
dt

|t=0, then differentiating (7) gives

(10) 2E′
g(h) =

(

∆+ 2L− δ∗gδg −∇d trg
)

h = 0,

where (Lh)ij = R k l
i j hkl and ∆ = ∇∗∇ is the rough Laplacian.

Definition 1.3. Let (M, g) be an Einstein manifold. A symmetric 2-tensor h ∈
Γ
(

S2 T ∗M
)

is an infinitesimal Einstein deformation of g if h satisfies (10) and
∫

M
trg hµg = 0. The space of infinitesimal Einstein deformations is denoted by

ED(g).

An infinitesimal Einstein deformations of the form LXg is said to be trivial.
The space of trivial infinitesimal Einstein deformations is denoted by TED(g). An
infinitesimal Einstein deformation h is said to be essential if it is orthogonal to
TED(g). The space of essential infinitesimal Einstein deformations is denoted by
EED(g). We can use the following lemma due to M. Berger and D.G. Ebin as the
definition of EED(g).

Lemma 1.4 ([4]). Let (M, g) be an Einstein manifold. An h ∈ Γ
(

S2 T ∗M
)

is an
element of EED(g) if and only if h satisfies

(11)
(

∆+ 2L
)

h = 0, δgh = 0, trg h = 0.

We have the decomposition of closed spaces

(12) ED(g) = EED(g)⊕ TED(g),

with EED(g) finite dimensional.

Definition 1.5. Let (M, g) be an Einstein manifold. The subset of Einstein metrics
in the Ebin slice Sg (cf. [12]) at g is called the local premoduli space of Einstein
structures and denoted by PM (g).

The local moduli space is PM (g)/ Isom(g), but it will be more convenient to
work with the local premoduli space.
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1.2.2. Deformation of spinors. We will need the machinery due to J.P. Bourguignon
and P. Gauduchon [6] for describing variations of spinor bundles and spinors under
metric variations and applied by M. Wang [42] to study Killing spinor variations.

Let P = LSO(n) be the bundle of oriented orthonormal frames on (M, g). A spin

structure is a double cover P̃ . Given a symmetric, with respect to g, automorphism
α : TM → TM we have a new metric

gα(X,Y ) = g(α−1X,α−1Y ).

If Pα is the bundle of gα-orthonormal oriented frames, α : P → Pα is SO(n)-
equivariant, and gives an isomorphism

Σ = P̃ ×Spin(n) Sn
α̃→ Σα = P̃α ×Spin(n) Sn.

Let α(t) be a smooth path of symmetric automorphisms with α(0) = 1TM , and
σ̂t Killing spinors for gα(t),

∇α(t)
X σ̂t = cX ·t σ̂t.

Set σt = α̃(t)−1(σ̂t), then in terms of the original spin bundle

(13) ∇α(t)
X σt = cα(t)−1(X) · σt,

where ∇α(t)
X = α̃(t)−1 ◦ ∇α(t)

X ◦ α̃(t).
A deformation of the Killing spinor σ0 is a path (α(t), σt) satisfying

(14) Lc(α(t), σt)(X) := ∇α(t)
X σt − cα(t)−1(X) · σt = 0.

We will make use of the twisted Dirac operator

(15) D : Γ(TM∗
C ⊗ Σ) → Γ(TM∗

C ⊗ Σ).

Decomposing into irreducible representations of Spin(n)

TM∗
C ⊗ Σ = Σ⊕ Σ 3

2
,

where Σ 3
2
is the bundle coming from the kernel of Clifford multiplication p : T ⊗

Sn → Sn. The component of D on Σ 3
2
is the Rarita-Schwinger operator

(16) Q : Γ(Σ 3
2
) → Γ(Σ 3

2
).

If Ψ ∈ Γ(Σ 3
2
) then DΨ = QΨ if and only if δgΨ = 0.

We define tensors Ψ(β,σ0),Θ(β,σ0) ∈ Γ(T ∗MC ⊗ Σ) for β : TM → TM and
σ0 ∈ Γ(Σ):

Ψ(β,σ0)(X) = β(X) · σ0(17)

Θ(β,σ0)(X) =
∑

i

ei(∇iβ)(X) · σ0,(18)

where X ∈ TM and {ei} is a local orthonormal frame. If β is symmetric, trg β = 0,

and δgβ = 0 then Ψ(β,σ0),Θ(β,σ0) ∈ Γ(Σ 3
2
). And if σ0 is a Killing spinor, then

δgΨ
(β,σ0) = δgΘ

(β,σ0) = 0.
Differentiating (14) at (1TM , σ0):

Proposition 1.6 ([42]).

dLc(α̇, σ̇)(X) = ∇σ̇X − cXσ̇ + cα̇(X)σ0 −
1

2

∑

i

ei(∇iα̇)(X)σ0 +
1

2
g(δα̇,X)σ0.
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If trg(α̇) = δα̇ = 0, then dLc(α̇, σ̇) = 0 if and only if ∇X σ̇ = cXσ̇ and DΨ(α̇,σ0) =

ncΨ(α̇,σ0).

For β : TM → TM g-symmetric, define h(X,Y ) = −2g(β(X), Y ).

Proposition 1.7 ([42]). If trg β = δβ = 0 and DΨ(β,σ0) = cnΨ(β,σ0), then
(

∆ +

2L
)

h = 0 where (Lh)ij = R k l
i j hkl.

So h ∈ Γ
(

S2 T ∗M
)

is an infinitesimal Einstein deformation.

Definition 1.8. An infinitesimal deformation of the Killing spinor σ0 is a pair
(β, σ), β : TM → TM symmetric and σ ∈ Γ(Σ), satisfying:

(i) σ is a Killing spinor with constant c,
(ii) trg β = δβ = 0,

(iii) DΨ(β,σ0) = ncΨ(β,σ0).

The following result will have applications for the existence of eigenvectors of Q.

Proposition 1.9 ([42]). Let (M, g) be spin with nonzero Killing spinor σ0. Let
h ∈ EED(g), and define β : TM → TM by h(X,Y ) = −2g(β(X), Y ). Then we
have an eigenvector of Q of either eigenvalue cn or c(2− n), that is

(i) DΨ(β,σ0) = ncΨ(β,σ0) and β is an infinitesimal deformation of σ0, or
(ii) Θ(β,σ0) − 2cΨ(β,σ0) 6= 0 and

D
(

Θ(β,σ0) − 2cΨ(β,σ0)
)

= c(2− n)
(

Θ(β,σ0) − 2cΨ(β,σ0)
)

.

Let (M, g) be Einstein, then the Einstein premoduli space PM (g) ⊆ Z, where
Z is a finite dimensional real analytic submanifold of the slice Sg [21]. The bundles
Σg′ and equation (1) depend real analytically on g′ ∈ Z. Define N

+
g′ (resp. N

−
g′)

to be space of solutions of (1) for g′ ∈ Z and c = 1
2 (resp. c = − 1

2 ). Since (1) has

injective symbol dimC N
±
g′ is upper semi-continuous. See for example [20, Lemma

4.3]. We will see by example that it is not locally constant as in the case of parallel
spinors.

1.3. Sasakian manifolds.

1.3.1. Sasakian structures. The Killing spinor deformations we consider are of the
non-exeptional cases of Sasakian and 3-Sasakian manifolds in Table 1. See [7] or
the monograph [8] for more on Sasakian geometry.

Definition 1.10. A Riemannian manifold (M, g) is Sasakian if the metric cone
(C(M), g), C(M) := R+ ×M and g = dr2 + r2g, is Kähler, that is g admits a
compatible almost complex structure J so that (C(M), g, J) is a Kähler structure.
Equivalently, Hol(C(M), g) ⊆ U(m), where dimM = n = 2m− 1.

It is convenient to identify M with {r = 1} = {1} ×M ⊂ C(M). A Sasaki
structure is a special type of metric contact structure. Traditionally the Sasakian
structure on M was defined as a metric contact structure (g, η, ξ,Φ) satisfying an
additional condition called normality, which is an integrability condition, where η
is a contact form with Reeb vector field ξ and Φ is a (1, 1) tensor. Here ξ and η are
restrictions to M of

(19) ξ = Jr∂r, η(X) =
1

r2
ξ y g,
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on C(M), which are given the same notation. It follows from the latter formula
that

(20) η = dc log r,

where dc =
√
−1(∂ − ∂). One can show from the warped product structure of

(C(M), g) that ξ is Killing and real holomorphic. If ω is the Kähler form of g, then

ω =
1

2
d(r2η) =

1

4
ddcr2.

we also have

(21) ω =
1

2
d(r2η) = rdr ∧ η + 1

2
r2dη.

Let D ⊂ TM be the contact distribution which is defined by

(22) Dx = ker ηx

for x ∈M . There is a splitting of the tangent bundle TM

(23) TM = D ⊕ Lξ,

where Lξ is the trivial subbundle generated by ξ. The tensor Φ ∈ End(TM) is
defined by Φ|D = J and Φ(ξ) = 0. Since ξ is Killing one can show that Φ = ∇ξ.
We denote the Sasakian structure by (g, η, ξ,Φ).

The vector field ξ+
√
−1r∂r is holomorphic on C(M), thus it defines a holomor-

phic action of C̃∗, the universal cover of C∗. The intersection of each orbit with
M ⊂ C(M) is an orbit of the action of ξ on M . Thus the orbits define a trans-
versely holomorphic foliation Fξ on M called the Reeb foliation. If ξ generates a
free U(1)-action, then the Sasakian structure is regular. The Sasakian structure is
quasi-regular if it generates a locally free U(1)-action, and irregular if not all the
orbits are compact.

The foliation Fξ together with its transverse holomorphic structure is given by
an open covering {Uα}α∈A and submersions πα : Uα → Wα ⊂ Cm−1 such that
when Uα ∩ Uβ 6= ∅ the map

φβα = πβ ◦ π−1
α : πα(Uα ∩ Uβ) → πβ(Uα ∩ Uβ)

is a biholomorphism.
Note that on Uα the differential dπα : Dx → Tπα(x)Wα at x ∈ Uα is an iso-

morphism taking the almost complex structure Jx to that on Tπα(x)Wα. Since

ξ y dη = 0 the 2-form 1
2dη descends to a form ωTα on Wα. Similarly, gT = 1

2dη(·,Φ·)
satisfies Lξg

T = 0 and vanishes on vectors tangent to the leaves, so it descends to
an Hermitian metric gTα on Wα with Kähler form ωTα . The Kähler metrics {gTα}
and Kähler forms {ωTα} on {Wα} by construction are isomorphic on the overlaps

φβα : πα(Uα ∩ Uβ) → πβ(Uα ∩ Uβ).
We will use gT , respectively ωT , to denote both the Kähler metric, respectively
Kähler form, on the the local charts and the globally defined pull-back on M .

If we define ν(Fξ) = TM/Lξ to be the normal bundle to the leaves, then we can
generalize the above concept.

Definition 1.11. A tensor Ψ ∈ Γ
(

(ν(Fξ)
∗)⊗p

⊗

ν(Fξ)
⊗q) is basic if LV Ψ = 0

for any vector field V ∈ Γ(Lξ).
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Note that it is sufficient to check the above property for V = ξ. Then gT and
ωT are such tensors on ν(Fξ). We will also make use of the bundle isomorphism

π : D → ν(Fξ), which induces an almost complex structure J on ν(Fξ) so that

(D, J) ∼= (ν(Fξ), J) as complex vector bundles. Clearly, J is basic and is mapped
to the natural almost complex structure on Wα by the local chart dπα : Dx →
Tπα(x)Wα.

To work on the Kähler leaf space we define the Levi-Civita connection of gT by

(24) ∇T
XY =

{

πξ(∇XY ) if X,Y are smooth sections of D,

πξ([V, Y ]) if X = V is a smooth section of Lξ,

where πξ : TM → D is the orthogonal projection onto D. Then ∇T is the unique
torsion free connection on D ∼= ν(Fξ) so that ∇T gT = 0. Then for X,Y ∈ Γ(TM)
and Z ∈ Γ(D) we have the curvature of the transverse Kähler structure

(25) RT (X,Y )Z = ∇T
X∇T

Y Z −∇T
Y∇T

XZ −∇T
[X,Y ]Z,

and similarly we have the transverse Ricci curvature RicT and scalar curvature sT .
We will denote the transverse Ricci form by ρT . From O’Neill’s tensors computation
for Riemannian submersions [34] and elementary properties of Sasakian structures
we have the following.

Proposition 1.12. Let (M, g, η, ξ,Φ) be a Sasakian manifold of dimension n =
2m− 1, then

(i) Ricg(X, ξ) = (2m− 2)η(X), for X ∈ Γ(TM),

(ii) RicT (X,Y ) = Ricg(X,Y ) + 2gT (X,Y ), for X,Y ∈ Γ(D).

In particular, if (M, g, η, ξ,Φ) is Sasaki-Einstein, then by 1.12 i it has Einstein
constant n− 1, that is

(26) Ricg = (n− 1)g.

Note that (26) is equivalent to (C(M), g) being Ricci-flat, since

Ricg = Ricg −(n− 1)g.

1.3.2. 3-Sasakian structures. Recall that a hyperkähler structure on a 4m-dimensional
manifold consists of a metric g which is Kähler with respect to three complex struc-
tures J1, J2, J3 satisfying the quaternionic relations J1J2 = −J2J1 = J3 etc.

Definition 1.13. A Riemannian manifold (M, g) is 3-Sasakian if the metric cone
(C(M), g) is hyperkähler, that is g admits compatible almost complex structures
Jα, α = 1, 2, 3 such that (C(M), g, J1, J2, J3) is a hyperkähler structure. Equiva-
lently, Hol(C(M)) ⊆ Sp(m).

A consequence of the definition is that (M, g) is equipped with three Sasakian
structures (g, ηi, ξi,Φi), i = 1, 2, 3. The Reeb vector fields ξi = Ji(r∂r), i = 1, 2, 3
are orthogonal and satisfy [ξi, ξj ] = −2εijkξk, where ε

ijk is anti-symmetric in the
indicies i, j, k ∈ {1, 2, 3} and ε123 = 1. The tensors Φi, i = 1, 2, 3 satisfy the
identities

Φi(ξj) = εijkξk(27)

Φi ◦ Φj = −δij1 + εijkΦk + ηj ⊗ ξi(28)
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It is easy to see that there is an S2 of Sasakian structures with Reeb vector field
ξτ = τ1ξ1 + τ2ξ2 + τ3ξ3 with τ ∈ S2.

The Reeb vector fields {ξ1, ξ2, ξ3} generate a Lie algebra sp(1), so there is an
effective isometric action of either SO(3) or Sp(1) on (M, g). Both cases occur in
the examples in this article. This action generates a foliation Fξ1,ξ2,ξ3 with generic
leaves either SO(3) or Sp(1).

If we set Di = ker ηi ⊂ TM, i = 1, 2, 3 to be the contact subbundles, then the
complex structures Ji, i = 1, 2, 3 are recovered by

(29) Ji(r∂r) = ξi, Ji|Di
= Φi.

Because a hyperkäher manifold is always Ricci-flat we have the following.

Proposition 1.14. A 3-Sasakian manifold (M, g) of dimension 4m−1 is Einstein
with Einstein constant λ = 4m− 2.

We choose a Reeb vector field ξ1, fixing a quasi-regular Sasakian structure, then
the leaf space Fξ1 is a Kähler orbifold Z with respect to the transversal complex

structure J = Φ1. But it has in addition a complex contact structure and a fibering
by rational curves which we now describe. The 1-form ηc = η2 +

√
−1η3 is a (1, 0)-

form with respect to J . But it is not invariant under the U(1) group generated

by exp(tξ1). We have exp(tξ1)
∗ηc = e2

√
−1 tηc. Let L = M ×U(1) C, with U(1)

acting on C by e−2
√
−1 t. This is a holomorphic orbifold line bundle; in fact C(M)

is either L−1 or L− 1
2 minus the zero section. It is easy to see that each of these

cases occur precisely where the Reeb vector fields generate an effective action of
SO(3) and Sp(1) respectively. Then ηc descends to an L valued holomorphic 1-
form θ ∈ Γ

(

Ω1,0(L)
)

. It follows easily from (28) that dηc restricted to D1 ∩ ker ηc

is a non-degenerate type (2, 0) form. Thus θ is a complex contact form on Z, and

θ ∧ (dθ)m−1 ∈ Γ
(

KZ ⊗ Lm
)

is a non-vanishing section. Thus L ∼= K
− 1

m

Z .

Each leaf of Fξ1,ξ2,ξ3 descends to a rational curve in Z. Each curve is a CP
1 but

may have orbifold singularities for non-generic leaves. It is also well-known that
restricted to a leaf L|CP1 = O(2), the degree 2 line bundle on a generic smooth
leaf, while O(2) is interpreted as an orbifold line bundle when the leaf has orbifold
singularities. The element exp(π2 ξ2) acts on M taking ξ1 to −ξ1, thus it descends
to an anti-holomorphic involution ς : Z → Z. This real structure is crucial to the
twistor approach. Note that ς∗θ = θ. This all depends on the choice ξ1 ∈ S2 of
the Reeb vector field. But taking a different Reeb vector field gives an isomorphic
twistor space under the transitive action of Sp(1).

2. Killing spinor deformations on Sasaki-Einstein manifolds

2.1. Deformations of transversal complex structures. Let (M, g, η, ξ,Φ) be a
Sasakian manifold. Then the Reeb foliation (Fξ, J) has a transversely holomorphic

structure. The existence of a versal deformation space for (Fξ, J), fixing the smooth
structure of F , was proved in [14] and [18] using arguments similar to those in [22].

Let Ak = Γ(Λ0,k
b ⊗ ν(F )1,0) be the space of smooth basic forms of type (0, k)

with values in ν(F )1,0. We have the Dolbeault complex

(30) 0 → A0 ∂b−→ A1 ∂b−→ A2 → · · · .
Here (30) is the basic version of the complex used by Kuranishi [22] whose degree one
cohomology is the space of first order deformation of the complex structure modulo
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diffeomorphisms. Likewise, the first order deformations of (Fξ, J) modulo foliate
diffeomorphisms are given by H1(A•). As in [22] there is an open set U ⊂ H1(A•)
and the versal deformation space V ⊂ U is the germ of θ−1(0) where θ is an analytic
map

H1(A•)
θ→ H2(A•).

Proposition 2.1. Suppose (M, g, η, ξ,Φ) is Sasaki-Einstein (just RicT > 0 is
sufficient). We have H2(A•) = {0}, so the versal deformation space is smooth,
U ⊂ H1(A•).

Proof. The basic version of Serre duality gives

H2(A•) = Hm−3

∂b

(Γ(Λ1,•
b ⊗ Λm−1,0

b )) = 0,

where the second equality is given by by Kodaira-Nakano vanishing, since Λm−1,0
b <

0 and (m− 3)+1 = m− 2 < m− 1. The proof of Kodaira-Nakano vanishing in [19]
goes through in transversally Kähler case using the transversal harmonic theory
of [15]. �

Since RicT > 0, the obstruction to lifting a deformation J t, t ∈ U, to a defor-
mation of Sasakian structures vanish.

Proposition 2.2. Let (M, g, η, ξ,Φ) be Sasaki-Einstein (or just RicT > 0 is suffi-
cient), then after possibly shrinking U, the deformation J t, t ∈ U, lifts to a smooth
family (gt, ηt, ξ,Φt), t ∈ U, where Φt induces the transversal complex structure J t.

Proof. We first show that the basic Dolbeault cohomologyH0,k
b = Hk

∂b
(Λ0,•

b ) = {0}.
This can be proved using Kodaira vanishing as above or from the Weitzenböck

formula on ψ ∈ Ω0,k
b

(31) 2∆∂b
ψα1...αk

= ∆Tψα1...αk
+

k
∑

j=1

(gT )βγ RicTαjβ
ψα1...αj−1γαj+1...αk

,

where ∆T = (∇T )∗∇T is the transversal rough Laplacian. Then if ψ is harmonic

and RicT ≥ λgT then integrating (31) gives

0 ≥
∫

M

(

〈∇Tψ,∇Tψ〉+ kλ〈ψ, ψ〉
)

µg,

where 〈·, ·〉 is the Hermitian product and µg = 1
(m−1)!η ∧ (12dη)

m−1. Therefore

ψ = 0.
By [13] there is a family of transversal Kähler metrics with Kähler forms ωTt on

(Fξ, J t) depending smoothly on t ∈ U with ωT0 = ωT . The above argument shows

that after shrinking U the Dolbeault groups on (Fξ, J t) also satisfy H0,k
b,t = {0}.

Since the harmonic space H2
∆∂b,t

, of the transverse Laplacian ∆∂b,t
with respect to

ωTt , has constant dimension, by for example [20, Lemma 4.3] there are isomorphisms
Rt : H2

∆∂b

→ H2
∆∂b,t

depending smoothly on t. There exists smoothly varying

αt ∈ H2
∆∂b

so that Rt(αt) = [ωT − ωTt ]h, the harmonic component. Let G be the

Green’s operator for ∆∂b
. Let βt = d∗G(ωTt +Rt(αt)−ωT ), and define ηt = η+βt.

Then 1
2dηt = ωTt + Rt(αt) which is of type (1, 1) and is positive definite for small

enough t.
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The family of Sasakian structures (gt, ηt, ξ,Φt) is defined by lifting J t to ker ηt
to get Φt, while

(32) gt =
1

2
dηt(·,Φt·) + ηt ⊗ ηt.

�

Remark 2.3. With the assumption c1(Fξ, J t) > 0 made in this article, the defor-
mations in Proposition 2.2 along with transversal Kähler deformations

η̃ = η + dcϕ, Φ̃ = Φ− ξ ⊗ η̃ ◦ Φ,

for ϕ ∈ C∞
b (M) basic, give all local deformations of the Sasakian structure fixing

the Reeb vector field. See [40] for details.
Since a Sasaki-Einstein structure is transversally Kähler-Einstein by Proposi-

tion 1.12.ii, a necessary condition for a compatible Sasaki-Einstein structure is that

(33) πc1(Fξ, J) = mωT .

It follows from the proof of Proposition 2.2 that if (33) holds for (M, g, η, ξ,Φ), then
the family (gt, ηt, ξ,Φt), t ∈ U, also satisfies

πc1(Fξ, J t) = mωTt .

We consider some properties of a first order deformation through Sasakian met-
rics which will be used later. We differentiate (32) and use the notation

J̇ t = I, ω̇T = φ, and ġT = h

where we have

(34) dη̇ = 2φ.

Since ωTt (X,Y ) = gTt (J tX,Y ), we have

φαβ =
√
−1hαβ + Iαβ(35)

φαβ =
√
−1hαβ .(36)

Note that since I anti-commutes with J0, it only has components I β
α and I β

α .
In addition differentiating

(37) gTt (J tX,Y ) + gTt (X,J tY ) = 0

gives

(38) 2
√
−1hαβ + (Iαβ + Iβα) = 0.

Finally (35) and (38) give

(39) φαβ =
1

2
(Iαβ − Iβα).
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2.2. Skew-Hermitian Einstein deformations. By Proposition 1.12.ii if (M, g, η, ξ,Φ)
is Sasaki-Einstein then the transversal Kähler metric gT on Fξ is Einstein

RicgT = 2mgT .

We define the space EED(gT ) just as in Section 1.2.1 using the transversal Levi-
Civita connection defined in (24), that is

EED(gT ) = {h ∈ Γ
(

S2 T ∗
bM

)

| trgT h = δgT h = 0,
(

∆T + 2LT
)

h = 0},
where LT is defined as in (10) but with the transverse curvature RT .

Given h ∈ Γ
(

S2 T ∗
bM

)

we decompose h into its Hermitian hH and anti-Hermitian

hA parts with respect to the transversal complex structure J on ν(Fξ), i.e.

hH(JX, JY ) = hH(X,Y ), hA(JX, JY ) = −hA(X,Y ).

We denote by EEDH(gT ) (resp. EEDA(g
T )) the space of Hermitian (resp. anti-

Hermitian) essential infinitesimal Einstein deformations. The following is an adap-
tation of results of N. Koiso [20] to the current situation.

Proposition 2.4. Suppose (M, g, η, ξ,Φ) is Sasaki-Einstein. Then we have the
decomposition

(40) EED(gT ) = EEDH(gT )⊕ EEDA(g
T ),

and h ∈ Γ
(

S2 Λ0,1
b

)

is an element of EEDA(g
T ) if and only if

∇T
αhβγ −∇T

β
hαγ = 0(41)

(∇T )αhαβ = 0.(42)

Proof. Suppose h ∈ Γ
(

S2 Λ0,1
b

)

. If h♯ denotes raising the second index, then h♯ ∈
A1. We have the Weitzenböck formula

(43) ∂b∂
∗
bh
♯ + ∂∗b∂bh

♯ =
1

2

(

∆T + 2LT
)

h♯.

Suppose h ∈ EED(gT ). Then
(

∆T + 2LT
)

hA = 0 and (43) implies δgT hA = 0.

Trivially, trgT hA = 0. Thus hA ∈ EED(gT ) and (40) follows.

It follows from (43) that h ∈ Γ
(

S2 Λ0,1
b

)

is in EEDA(g
T ) if and only if (41) and

(42) hold. �

Let Hk
A

denote the k-th harmonic space of the complex (30).

Corollary 2.5. Let (M, g, η, ξ,Φ) be Sasaki-Einstein. Then there is a canonical
isomorphism

(44)
H1

A

∼−→ EEDA(g
T )

hαβ 7−→ −
√
−1hαβ .

Proof. First note that from Proposition 2.4 and formula (43) we have a decompo-
sition

(45) H
1
A = H

1
A,S ⊕H

1
A,A,

into symmetric and anti-symmetric parts. If φ ∈ H1
A,A then Lφ = 0. Thus (43)

shows that ∆Tφ = 0, and we have ∇Tφ = 0. Lowering an index gives an harmonic
φαβ ∈ Ω0,2

b . Since M is Sasaki-Einstein (31) becomes

2∆∂b
φαβ = ∆Tφαβ + 4mφαβ .
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Since all but the last term are zero, φαβ = 0. �

Lemma 2.6. Let (M, g, η, ξ,Φ) be Sasaki-Einstein and hT ∈ Γ
(

S2 T ∗
bM

)

an ele-

ment of EEDA(g
T ). If h = π∗hT is the pull-back of the basic tensor hT to M then

h ∈ EED(g).

Proof. First note that the O’Neill tensor of the local projection π onto the leaf
space of the foliation Fξ is

(46) AXY = g(ξ,∇XY )ξ = −g(ΦX,Y )ξ, X, Y ∈ Γ(D).

We will use the formulae of O’Neill on the curvature of a Riemannian submersion.
See [5, ch. 9] for more details.

If X,Y, Z,W ∈ Γ(D) are basic vector fields, then we have

g(R(X,Y )Z,W ) = gT (RT (X,Y )Z,W ) + 2g(ΦX,Y )g(ΦZ,W ) + g(ΦX,Z)g(ΦY,W )

− g(ΦY, Z)g(ΦX,W ),

(47)

(48) g(R(X,Y )ξ,W ) = g(X,W )g(Y, ξ)− g(X, ξ)g(Y,W ).

A routine calculation shows that

∆h(X,Y ) = π∗(∆ThT
)

(X,Y ) + 4h(X,Y )− 2h(ΦX,ΦY ),

∆h(ξ,X) = −2δhT (ΦX),

∆h(ξ, ξ) = −2 trhT .

We compute from (47) using an orthonormal frame {e1, . . . , e2m−2, ξ} that

Lh(X,Y ) =π∗(LThT
)

(X,Y ) +
∑

i,j

[

2g(ΦX, ei)g(ΦY, ej) + g(ΦX,Y )g(Φei, ej)

− g(Φei, Y )g(ΦX, ej)
]

h(ei, ej)

= π∗(LThT
)

(X,Y ) + 2h(ΦX,ΦY ) + h(ΦY,ΦX)

= π∗(LThT
)

(X,Y )− 3h(X,Y ).

(49)

And (48) easily gives

(50) Lh(X, ξ) = −g(ξ,X) trh+ h(ξ,X) = 0.

It follows from the above equations that

(51)
(

∆+ 2L
)

h = π∗(∆ThT
)

+ 2π∗(LThT
)

,

and δh = 0, trh = 0 are trivial. �

Remark 2.7. It is clear from the proof that a non-zero h = π∗hT is not an
infinitesimal Einstein deformation if hT is not anti-Hermitian.
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2.3. Infinitesimal deformations on Sasaki-Einstein manifolds. From Propo-
sition 2.4 and Lemma 2.6 for any β ∈ H1

A
we have hβ ∈ EED(g), where hβ(X,Y ) =

gT (JβX, Y ). We define as in Section 1.2.2 Ψβ,σ0(X) = α(X)σ0, where α = − 1
2 (h

β)♯

and σ0 is Killing spinor.

Proposition 2.8. Let (M, g) be a spin Sasaki-Einstein manifold admitting the 2
defining Killing spinors σj , j = 0, 1. If β ∈ H1

A
then the corresponding basic anti-

Hermitian symmetric tensor hβ is an infinitesimal Einstein deformation of g, and
(α, 0), α = − 1

2 (h
β)♯ is an infinitesimal deformation of the Killing spinors σj for

j = 0, 1.

Remark 2.9. The definitions of hβ, Ψβ,σ0 and α are made to agree with the
identifications made in Corollary 2.5 and Section 1.2.2.

Proof. That hβ is an infinitesimal Einstein deformation follows from Lemma 2.6.
In the proof we denote (hβ)♯ by h which can be considered to be a basic tensor

with values in D = ker η and Φh = −hΦ. By Proposition 1.6 it is sufficient to prove

(52)
∑

i

ei ·
(

∇ih
)

(X)σj = 2ch(X)σj , for all X ∈ TM, j = 0, 1.

for a local orthonormal frame {e1, . . . , e2m−1} for which we may choose ei ∈ Γ
(

D
)

for i = 1, . . . , 2m−2, em−1+i = Φei for i = 1, . . . ,m−1 and e2m−1 = ξ. We extend
to an orthonormal frame on C(M) by setting e2m = ∂r.

Define an Hermitian frame by εα = 1√
2
(eα −

√
−1Jeα), α = 1, . . . ,m − 1 and

εm = 1√
2
(e2m−1 −

√
−1Je2m−1) = 1√

2
(ξ +

√
−1∂r). Denote their duals by εα =

1√
2
(eα +

√
−1Jeα) and define εα = εα. Note that εα = εα.

Since Hol(g) ⊆ SU(m) the spinor bundle Σ ofM can be identified, on the neigh-
borhood of the frame, with Λev SpanC{εα|α = 1, . . . ,m} = ΛevT 1,0C(M)|M , or
Λodd SpanC{εα|α = 1, . . . ,m}. Clifford multiplication is given by ei 7→ eie2m, 1 ≤
i ≤ 2m− 1 (or ei 7→ −eie2m giving the other Clifford module structure on Σ).

If m is even we take Σ = Λev SpanC{εα|α = 1, . . . ,m}. If m is odd, then we
take Σ = Λodd SpanC{εα|α = 1, . . . ,m} when considering σ1 ∈ Γ(Σ), and Σ =
Λeven SpanC{εα|α = 1, . . . ,m} when considering σ0 ∈ Γ(Σ). In the latter case we
take Clifford multiplication to act through ei 7→ −eie2m in order to obtain the same
Clifford module structure on Σ (in this case c = − 1

2 ).

The Killing spinors are locally σ0 = a(x) ∈ Γ
(

Λ0
)

and σ1 = b(x)ε1 ∧ · · · ∧ εm ∈
Γ
(

Λm
)

, where a, b are smooth functions.

Note that for X,Y ∈ Γ
(

D
)

basic

∇Y h(X) = ∇T
Y h(X) + g(∇Y (hX), ξ)ξ

= ∇T
Y h(X)− g(h(X),ΦY )ξ.

(53)
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Thus

2m−1
∑

i=1

ei
(

∇ih
)

(X)σj =

2m−2
∑

i=1

ei
(

∇T
i h

)

(X)σj + ξ
(

∇ξh
)

(X)σj +
∑

i

eig(Φh(X), ei)ξσj

=

2m−2
∑

i=1

ei
(

∇T
i h

)

(X)σj + 2ξΦh(X)σj +Φh(X)ξσj

=

2m−2
∑

i=1

ei
(

∇T
i h

)

(X)σj − Φh(X)ξσj .

(54)

We will show that the first term on the right of (54) vanishes. First supposeX = εγ ,
then

2m−2
∑

i=1

ei
(

∇T
i h

)

(X)σj =

m−1
∑

α=1

εα
(

∇T
εαh

)

(εγ)σj +

m−1
∑

α=1

εα
(

∇T
εα
h
)

(εγ)σj

= εα∇T
αhγ

βεβσj + εα∇T
αhγ

βεβσj .

(55)

If j = 0, then this vanishes since εβσ0 = 0. Suppose j = 1, then the first term on

the right of (55) is

εα∇T
αhγ

βεβσ1 = ∇T
αhβγε

αεβσ1

=
∑

α<β

(

∇T
αhβγ −∇T

β hαγ
)

εαεβσ1 = 0,
(56)

because of (41). And the second term on the right of (55) is

εα∇T
αhγ

βεβσ1 = ∇T
αhβγε

αεβσ1

= ∇T
αhβγ

(

−εβεα − 2g(εα, εβ)
)

σ1

= −2
(

∇T
)α
hαγσ1 = 0,

(57)

because of (42). The case of X = εγ is completely analogous.
We have

2m−1
∑

i=1

ei
(

∇ih
)

(ξ)σj = −
2m−2
∑

i=1

eih(Φei)σj

= −
2m−2
∑

i,k=1

eih(Φei, ek)ekσj

=

2m−2
∑

i=1

h(Φei, ei)σj = 0,

(58)

for j = 0, 1. The last two equalities follow because h(Φ·, ·) is symmetric and anti-
Hermitian.

We have that

(59)

2m−1
∑

i=1

ei
(

∇ih
)

(X)σj = −Φh(X)ξσj , for X ∈ TM.
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Recall that Clifford multiplication is X · σj = X∂rσj , for X ∈ TM with our
representation space, unless σj has c = − 1

2 in which case we must take X · σj =
−X∂rσj . It is easy to check that

(60) − Φh(X)ξσj = h(X)∂rσj , j = 1, 2.

Then (52) follows from (59) and (60) and the Proposition follows. �

2.4. Infinitesimal deformations on 3-Sasakian manifolds. Recall the impor-
tant result of H. Pedersen and Y. S. Poon that 3-Sasakian structures are rigid.

Theorem 2.10 ([35]). Let (M, g), dimM = 4m − 1, be a 3-Sasakian manifold
with Killing spinors σi, i = 0, . . . ,m. Then any Einstein deformation (M, gt)
of g with compatible 3-Sasakian structures, i.e. preserving the existence of the
σi, i = 0, . . . ,m, is trivial. That is, there exists a family φt of diffeomorphisms of
M with φ∗t gt = g.

The transversal space Fξ, for any fixed Reeb vector field ξ ∈ S2, is an orbifold Z

with a complex contact structure. Recall that the twistor spaces for any two ξ ∈ S2

are isomorphic via the transitive action of Sp(1) on the S2 of Reeb vector fields.
We denote by H1

A
(ξ) the harmonic space of the particular ξ ∈ S2. Although, the

H1
A
(ξ), ξ ∈ S2, are isomorphic they give different deformations hβ ∈ EED(g), β ∈

H1
A
(ξ).
The proof of Theorem 2.10, and the earlier similar result [24] of C. LeBrun,

follow mainly from the vanishing of H1(Z,O(L)). We have

H1(Z,O(L)) = H1(Z,Ω2m−1(K−1
Z ⊗ L)) = {0}

by Kodaira vanishing, since K−1
Z ⊗ L > 0.

The following provides a spinor version of this vanishing result.

Proposition 2.11. Let (M, g), dimM = 4m − 1, be a 3-Sasakian manifold with
Killing spinors σj , j = 0, . . . ,m. If β ∈ H1

A
(ξ) is nonzero, then the corresponding

basic anti-Hermitian symmetric tensor hβ is an infinitesimal Einstein deformation
of g, and (α, 0), α = − 1

2 (h
β)♯ is an infinitesimal deformation of the Killing spinors

σj for j = 0,m, but never for any nonzero σ ∈ SpanC{σj |j = 1, . . . ,m− 1}.
It will be convenient to introduce some notation. Given σ ∈ Ng we change

notation and write the formula in Proposition 1.6 as

(61) L(α, σ)(X) = −1

2

∑

i

ei ·
(

∇iα
)

(X)σ +
1

2
α(X)σ, for all X ∈ TM.

Then the proposition asserts that L(α, σ) = 0 for σ = σj j = 0,m and L(α, σ) 6= 0
for nonzero σ ∈ SpanC{σj |j = 1, . . . ,m− 1}.

Proof. We consider a local orthonormal frame which is in the Sp(m)-structure of
C(M)

(e1, e2, . . . , e4m) = (f1, J1f1, J2f1, J3f1; f2, J1f2 . . . ; fm, J1fm, J2fm, J3fm),

where e1, . . . , e4m−4 ∈ ∩i=1,2,3Di = D, fm = −ξ3, J1fm = ξ2, J2fm = −ξ1 and
J3fm = ∂r.

We define an Hermitian frame by εα = 1√
2
(e2α−1 −

√
−1J1e2α−1) =

1√
2
(e2α−1 −√

−1e2α), α = 1, . . . , 2m, and their duals εα = εα = εα. In particular, we have
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ε2m−1 = 1√
2
(−ξ3−

√
−1ξ2) and ε2m = 1√

2
(−ξ1−

√
−1∂r). As in the proof of Propo-

sition 2.8 the spinor bundle of (M, g) can be identified with Σ = ΛevT 1,0C(M)|M =
Λev SpanC{εα|α = 1, . . . , 2m}.

Define the “symplectic form”

(62) ̟ =

m
∑

α=1

ε2α−1 ∧ ε2α.

The Killing spinors on (M, g) can be identified with

σk =
1

k!
̟k ∈ Γ

(

ΛevT 1,0C(M)
)

, k = 0, . . . ,m.

From the proof of Proposition 2.8 a Killing spinor σk is preserved to first order by
the Einstein deformation h if and only if

(63)

2m−1
∑

α=1

εα∇T
αh(X)σk +

2m−1
∑

α=1

εα∇T
αh(X)σk + ξ1Φ1h(X)σk = 2ch(X)σk,

holds for all X ∈ D1. Here c =
1
2 .

Define ψ ∈ Ω0,1(L) by ψβ = hγ
β
θγ . Since θ is holomorphic ∂ψ = 0. The line

bundle L has a natural hermitian metric by the identification L = K
− 1

m

Z , so there
is a natural connection on L. Then

∂∗ψ = −∇Tβψβ

= −hβγ∇βθγ = 0,
(64)

where the second equality holds from ∇Tβhβ
γ = 0. For the third equality observe

that ∇βθγ lifts to the form dηc = g(Φ2·, ·)+
√
−1g(Φ3·, ·) restricted to D1, but h

βγ

is symmetric and so the contraction is zero.
Therefore ψ ∈ Ω0,1(L) is harmonic. But as we observed, H1(Z,O(L)) = 0, so

ψ = 0. It follows that h(X) ∈ D for all X ∈ TM . This fact will be used repeatedly
in the rest of the proof.

Substituting ξ1 = −1√
2
(ε2m + ε2m) and ∂r =

√
−1√
2
(ε2m − ε2m) into (63) and

canceling terms gives
(65)
2m−1
∑

α=1

εα∇T
αh(X)σk+

2m−1
∑

α=1

εα∇T
αh(X)σk−

√
−1

√
2h(X)0,1ε2m+

√
−1

√
2h(X)1,0ε2m = 0.

We saw in the proof of Proposition 2.8 that

εα∇T
αhβγε

γ = εα∇T
αhβγε

γ = 0,

so (65) becomes

2m−1
∑

α=1

2m−1
∑

γ=1

∇T
αhβγε

αεγσk −
√
−1

√
2h(εβ)ε2mσk = 0, for X = εβ,(66)

2m−1
∑

α=1

2m−1
∑

γ=1

∇T
αhβγε

αεγσk +
√
−1

√
2h(εβ)ε2mσk = 0, for X = εβ.(67)
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Define ϑ =
∑m−1

α=1 ε2α−1 ∧ ε2α, then we have

(68) σk =
1

k!
ϑk +

1

(k − 1)!
ϑk−1 ∧ ε2m−1 ∧ ε2m.

The second term of (66) is

−
√
−1

√
2h(εβ)ε2mσk = −

√
−12

√
2

k!
ε2m ∧

(

h(εβ) yϑ
k
)

= −
√
−12

√
2

(k − 1)!
ε2m ∧

(

h(εβ) yϑ
)

∧ ϑk−1

= −
√
−12

√
2

(k − 1)!
ε2m ∧ Φ2h(εβ) ∧ ϑk−1.

(69)

Note that every term of (69) contains ε2m but does not contain ε2m−1. The terms
of the first component of (66) which also contain ε2m but not ε2m−1 are

(70)

2m−1
∑

α=1

∇T
αhβ2m−1ε

αε2m−1σk.

We simplify (70) to get

2m−1
∑

α=1

∇T
αhβ2m−1ε

αε2m−1σk =
2m−1
∑

α=1

−h(εβ ,∇T
ǫα
ǫ2m−1)ε

αε2m−1σk

=
√
−1

√
2
2m−1
∑

α=1

h(εβ ,Φ2ǫα)ε
αε2m−1σk

= −
√
−1

√
2Φ2h(εβ)ε

2m−1σk

=

√
−12

√
2

(k − 1)!
Φ2h(εβ) ∧ ϑk−1 ∧ ε2m.

(71)

Together the terms of (66) which contain ε2m but not ε2m−1 are

(72) −
√
−14

√
2

(k − 1)!
ε2m ∧Φ2h(εβ) ∧ ϑk−1.

We claim that (72) is non-zero for 1 ≤ k ≤ m − 1 when Φ2h(εβ) is non-zero. But
this follows because ϑ is a complex symplectic form on D. Thus h(εβ) = 0.

A similar argument will be carried out with (67). The second term of (67) is

√
−1

√
2h(εβ)ε2mσk =

√
−12

(k − 1)!
h(εβ)

(

ϑk−1 ∧ ε2m−1

)

=

√
−12

√
2

(k − 1)!
h(εβ) ∧ ϑk−1 ∧ ε2m−1.

(73)

The terms of the first component of (67) which contain ε2m−1 but not ε2m are

(74)

2m−1
∑

α=1

∇T
αhβ2m−1ε

αε2m−1σk.
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We compute

2m−1
∑

α=1

∇T
αhβ2m−1ε

αε2m−1σk =
2m−1
∑

α=1

−h(εβ,∇T
αε2m−1)ε

αε2m−1σk

= −
√
−1

√
2

2m−1
∑

α=1

g(h(εβ),Φ2εα)ε
αε2m−1σk

=
√
−1

√
2Φ2h(εβ)ε2m−1σk

=

√
−12

√
2

k!
ε2m−1 ∧

(

Φ2h(εβ) yϑ
k
)

=

√
−12

√
2

(k − 1)!
ε2m−1 ∧

(

Φ2h(εβ) yϑ
)

∧ ϑk−1

= −
√
−12

√
2

(k − 1)!
ε2m−1 ∧ h(εβ) ∧ ϑk−1

(75)

Combining (73) and (75) give

(76) −
√
−14

√
2

(k − 1)!
ε2m−1 ∧ h(εβ) ∧ ϑk−1.

We have for X ∈ Γ(D1,0) that the component of L(α, σk)(X) containing ε2m
but not ε2m−1 is − 1

2 of (72). Since these terms are linearly independent, for σ =
∑m−1
k=1 akσk, L(α, σk)(X) = 0 for all X implies h = 0. �

The proof involved determining the component of (61) with the spinor compo-
nent containing precisely one vector in SpanC{ε2m−1, ε2m}. This is given in (72)
and (76). This component is preserved under changes of the frame used in the
calculation. This will be used later in Section 4.1 where more details will be given.
It will be useful that this component is

(77) − Φ1h(X)ξ1 · σ − h(X)∂r · σ.

3. Integrable deformations of Killing spinors

We consider the integrability of the infinitesimal Einstein deformations hβ ∈
EED(g) for β ∈ H1

A
from the last section. We will also consider the integrabil-

ity of infinitesimal Killing spinor deformations. This is essentially the problem of
deforming Sasaki-Einstein metrics. We give some sufficient conditions for integrat-
ing these infinitesimal deformations. A deeper sufficient condition for deforming
Sasaki-Einstein metrics is K-polystability (see [40]), but here we merely give some
sufficiency results using analytic methods.

3.1. Integrability on Sasaki-Einstein manifolds. We state a result from [39]
giving a sufficient condition for deforming Sasaki-Einstein structures. Let (M, g, η, ξ,Φ)
be a Sasaki-Einstein structure, and let G ⊆ G′ = Aut(g, η, ξ,Φ) be a compact sub-
group. We consider G-equivariant deformations of the foliation (Fξ, J). We have
the G-equivariant Dolbeault complex

(78) 0 → A0
G

∂b−→ A1
G

∂b−→ A2
G → · · · ,

with AkG = Γ(Λ0,k
b ⊗ν(F )1,0)G the subspace of G-invariant sections. Then H1(A•

G)

gives the first order deformations of (Fξ, J) preserving the action of G. We saw
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in Proposition 2.1 that the versal deformation space U is smooth. The space of G-
equivariant deformations UG ⊆ U is a submanifold with tangent space H1(A•

G) ⊆
H1(A). With respect to a fixed transversal Kähler structure we have theG-invariant
harmonic space H1

A,G and H1(A•
G)

∼= H1
A,G.

If (Fξ, J t)t∈V is a G-equivariant deformation, then one can show as in Propo-
sition 2.2 that there is a family of Sasakian structures (gt, ηt, ξ,Φt), t ∈ V, with
G ⊆ Aut(gt, ηt, ξ,Φt) where Φt induces the transversal complex structure J t. Ar-
guments using the implicit function theorem can show the following.

Theorem 3.1 ([39]). Suppose (M, g, η, ξ,Φ) is a Sasaki-Einstein manifold. Let
G ⊆ Aut(g, η, ξ,Φ) be a maximal torus, and let (Fξ, J t)t∈V be a G-equivariant
deformation with V smooth. Then after possibly shrinking V, there is a family
(gt, ηt, ξ,Φt), t ∈ V of Sasaki-Einstein structures with (g0, η0, ξ,Φ0) = (g, η, ξ,Φ)
and with Φt inducing the transversal complex structure J t.

This implies the following in terms of Killing spinors.

Corollary 3.2. Let (M, g) be a spin Sasaki-Einstein manifold admitting the two
defining Killing spinors σj , j = 0, 1, e.g. M is simply connected. Then the infini-
tesimal Einstein deformations hβ, for β ∈ H1

A,G, integrate to a family gt, t ∈ V ⊂
Cd, d = dimC H1

A,G, of Einstein deformations preserving σj , j = 0, 1.

The components in EED(g) of {v(gt) | v ∈ T0V} are precisely the original infin-
itesimal Einstein deformations {hβ | β ∈ H1

A,G}.

Proof. Just the last statement remains to be proved. Consider the family (gt, ηt, ξ,Φt), t ∈
V of Proposition 2.2. Using the notation of Section 2.1 and differentiating in the
direction of some v ∈ T0V we have

φαβ = 0(79)

φαβ =
√
−1hαβ(80)

hαβ =
√
−1Iαβ ,(81)

which follow from (39), (36) and (35) respectively. In the proof of Proposition 2.2
the basic cohomology class [ωTt ] is constant. Thus φ is an exact (1, 1)-form. We may
replace ηt with ηt + dcψt, so that using the same notation we have 1

2dη̇t = φ = 0.
The possible contact forms for a fixed Reeb vector field ξ and transversal complex

structure J t are ηt+d
cψt+dθt for basic functions ψt, θt ∈ C∞

b (M). See [39, Lemma

2.2.3], where we also use that RicT > 0, which implies that the basic cohomology
H1
b = H1(M,R) = {0}. And dθt is given by a gauge transformation exp(θtξ)

∗ηt,
which fixes basic tensors. Therefore, by adding a factor of dθt to ηt, we may arrange
that η̇t = 0. We assume that the family (gt, ηt, ξ,Φt), t ∈ V is chosen so that η̇t = 0
at t = 0. Thus the only component of ġt at t = 0 is hαβ =

√
−1Iαβ ∈ EED(g).

Recall that if ψ ∈ C∞
b (M) is sufficiently small there is a Sasakian structure

(gt,ψ, ηt,ψ , ξ,Φt,ψ) with contact form ηt,ψ = ηt+d
cψ and transversal complex struc-

ture J t. The metric is

gt,ψ =
1

2
dηt,ψ(·, J t·) + ηt,ψ ⊗ ηt,ψ ,

and Φt,ψ is the lift of J t to ker ηt,ψ.
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Theorem 3.1 is proved by using the implicit function theorem to find ψt ∈
C∞
b (M), t ∈ V, so that the Sasakian structure (gt,ψ, ηt,ψ, ξ,Φt,ψ) has scalar curva-

ture st,ψt
= 0. We review enough of the proof of Theorem 3.1 to prove the corollary.

For more details see [39].
We consider the G-invariant Sobolev space L2

k+4,G(M), k > m, of k + 4 times

weakly differentiable functions. For ψ ∈ L2
k+4,G(M) small we have the Sasakian

structure with metric gt,ψ as above. We have the space of holomorphy potentials
H

g

t,ψ for this metric where g is the Lie algebra of G (cf. [39]). Using the metric gt,ψ
to define the L2 inner product on L2

k,G(M) we have the orthogonal decomposition

L2
k,G(M) =

√
−1Hg

t,ψ ⊕Wk,t,ψ ,

and the projections

πGt,ψ : L2
k,G(M) →

√
−1Hg

t,ψ, and π
W
t,ψ : L2

k,G(M) →Wk,t,ψ .

The reduced scalar curvature of gt,ψ is given by

(82) sGt,ψ = πWt,ψ(st,ψ) = (1 − πGt,ψ)(st,ψ).

Let U ⊂ V × L2
k+4,G(M) be a neighborhood of (0, 0) so that for (t, ψ) ∈ U ,

(gt,ψ, ηt,ψ , ξ,Φt,ψ) is well defined. For U = U ∩
(

V×Wk+4,0

)

we define a map

(83)
S : U → Wk,0

(t, ψ) 7→ πW0 (sGt,ψ).

The derivative of (83) is

(84) dS :Wk+4,0 →Wk,0,

with dS(ψ̇) = −2Lgψ̇. Here Lg is the self-adjoint operator

Lgψ =
1

2
∆2
bψ +

1

2
(RicT , ddcψ) +

1

2
(dψ, dsg).

As proved in [39, Cor. 4.2.5] there is a family ψt, t ∈ U, with

(85) S(t, ψt) = πW0 (sGt,ψt
) = 0.

Since ġt ∈ EED(g) it is easy to check that d
dt
sGt,0 = 0 at t = 0. Then differentiating

(85) at t = 0 gives −2Lgψ̇t = 0. But (84) is an isomorphism, so ψ̇t = 0 at t = 0.

Therefore at t = 0 we have ġt,ψt
= ġt which is hαβ =

√
−1Iαβ ∈ EED(g). �

We will give an application of Theorem 3.2 in Section 4.2.

3.2. Integrability on 3-Sasakian manifolds. We can prove integrability of many
of the transversal infinitesimal deformations on a 3-Sasakian manifold. The infin-
itesimal deformations of the real subspace ReH1

A
(ξ) ⊂ H1

A
(ξ) with respect to the

real structure ς : H1
A
(ξ) → H1

A
(ξ) induced by the anti-holomorphic real structure

ς : Z → Z integrate to Einstein deformations preserving the existence of precisely
two Killing spinors.

Theorem 3.3. Let (M, g), dimM = 4m−1, be a 3-Sasakian manifold, and denote
by σi, i = 0, . . . ,m the Killing spinors associated to the 3-Sasakian structure. Then
the infinitesimal Einstein deformations hβ of g for β ∈ ReH1

A
(ξ) in Proposition 2.8

integrate to a family gt, t ∈ N ⊂ Rd, d = dimC H1
A
, of Einstein deformations of

g preserving σ0 and σm but not the remaining. The components in EED(g) of
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{v(gt) | v ∈ T0N} are precisely the original infinitesimal Einstein deformations
{hβ | β ∈ H1

A
(ξ)}.

Corollary 3.4. Let (M, g), dimM = 4m − 1, be a 3-Sasakian manifold with
d = dimCH

1(A•). Then g has a d-dimensional family of non-trivial deformations,
{gt | t ∈ N ⊂ Rd}, where gt, t 6= 0, has a compatible Sasaki-Einstein structure but
no 3-Sasakian structure.

Recall that the quotient of M , dimM = 4m + 3, by the action of Sp(1)-action

generated by {ξ1, ξ2, ξ3} is a quaternion-Kähler orbifold (M̂, ĝ), dim M̂ = 4m. If
m ≥ 2, this means there is a three dimensional bundle J ⊂ End(TM) which is

locally spanned by almost complex structures Ĵi, i = 1, 2, 3 satisfying the quater-
nionic identities which is preserved by the Levi-Civita connection of ĝ. This is
equivalent to the existence of a 1-integrable Sp(m) Sp(1)-structure on M̂ . The

O’Neill formulas of the submersion π : M → M̂ show that (M̂, ĝ) is Einstein with
constant λ = 4m+ 8. If m = 1, every oriented manifold satisfies this with J = Λ2

+.

A 4-dimensional quaternion-Kähler orbifold (M̂, ĝ) is defined to be oriented and
satisfy W+

g ≡ 0 and Ricg = λg.
We will consider a weaker condition, that of a quaternionic structure (cf. [37]).

Definition 3.5. A quaternionic structure on M̂ , of dimension 4m, m ≥ 2, is
a three dimensional subbundle J ⊂ End(TM̂) which is locally spanned by almost

complex structures Ĵi, i = 1, 2, 3 satisfying the quaternionic identities and preserved
by a torsion-free connection on TM̂ . This is equivalent to the existence of a 1-
integrable GL(m,H) Sp(1)-structure.

If m = 1, then a quaternionic structure is defined to be a conformal class [g] with

an orientation on M̂ satisfying W+
[g] ≡ 0.

Part of the interest in quaternionic manifolds is due to an attractive twistor
correspondence [36]. If (M̂, J) is a 4m-dimensional quaternionic manifold, then the
twistor space is Z = P(E) where E is the locally defined complex 2-dimensional
bundle associated to the complex 2-dimensional representation of the Sp(1)-factor
of GL(m,H) Sp(1). Then Z is a 2m+1-dimensional complex manifold with a fam-
ily of twistor lines CP

1 with normal bundle OCP1(1)⊕2m and an anti-holomorphic
involution ς : Z → Z preserving the real twistor lines. Conversely, if Z is a
2m+ 1-dimensional complex manifold with a family of twistor lines CP

1 with nor-
mal bundle OCP1(1)⊕2m and an anti-holomorphic involution σ : Z → Z, then a
connected component of real twistor lines is a 4m-dimensional manifold with a
quaternionic structure. Since the twistor correspondence is natural, if (M, J) is a
quaternionic orbifold we may define the twistor space over each uniformizing chart
as for manifolds and quotient by the orbifold group.

We say that a diffeomorphism of a quaternionic manifold(orbifold) F : M̂ → M̂
is a quaternionic automorphism if the derivative of F preserves the bundle J, or
equivalently preserves the GL(m,H) Sp(1)-structure. The following is essentially
different proof of a result of C. LeBrun [26, Corollary C], but we need to consider

the case in which (M̂, ĝ) is an orbifold.

Lemma 3.6. Let (M̂, ĝ) be a quaternion-Kähler manifold or orbifold whose associ-

ated 3-Sasakian space M is smooth. If (M̂, ĝ) admits a quaternionic automorphism
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which is not an isometry, then (M̂, ĝ) is locally isometric to HP
m with the symmet-

ric metric. Thus (M̂, ĝ)
isom∼= Γ\HP

m, Γ ⊂ Sp(m+ 1).

Proof. Let M → M̂ be the Sp(1) or SO(3) orbifold bundle with M the 3-Sasakian

space associated to M̂ . Suppose there is such a quaternionic automorphism F :
M̂ → M̂ , then F lifts to a diffeomorphism F : M → M which maps each ξi, i =
1, 2, 3 to itself and preserves the complex structure on the transverse space Z. The
complex contact form θ of Z lifts to ηc = η2 +

√
−1η3. Since F : M̂ → M̂ is an

isometry if and only if the biholomorphism induced on Z is complex contact [25, 32],
η̂ = F ∗ηc 6= ηc. And C(M) has two holomorphic symplectic forms ̟ = d(r2ηc)
and ˆ̟ = d(r2η̂). If ∇ is the Levi-Civita connection of (C(M), g), then ∇̟ = 0.
Note that both ̟ and ˆ̟ are of order 2 with respect to the Euler vector field r∂r.
Since ∇∂r∂r = 0 and ∇r∂rX = X for a vector field X on M viewed as a vector
field on C(M), it is easy to check that ∇∂r ˆ̟ = 0.

We have the following formula on a Kähler-Einstein manifold with Einstein con-
stant λ

(86) ∇β∇β ˆ̟α1α2 = ∇β∇β ˆ̟α1α2 + 2λ ˆ̟ α1α2 .

Since λ = 0 and ˆ̟ is holomorphic, we have ∇β∇β ˆ̟α1α2 = ∇β∇β ˆ̟α1α2 = 0.

Consider TC(M)|M as an Hermitian vector bundle on M and denote by ∇ the
connection ∇ restricted to M . Then ∇∗∇ ˆ̟ = ∇∗∇ ˆ̟ = 0 and

0 =

∫

M

〈∇∗∇ ˆ̟ , ˆ̟ 〉µg

=

∫

M

〈∇ ˆ̟ ,∇ ˆ̟ 〉µg.

Therefore ∇ ˆ̟ = 0. So the holonomy of (C(M), g) stabilizes two linearly indepen-

dent (2, 0)-forms of maximal rank, and the holonomy of the universal cover ˜C(M)

is reducible. It follows from [17, Prop. 3.1] that ˜C(M) is flat. Thus M is isometric
to a space form Γ\ S4m+3. �

Proof of Theorem. Fixing a ξ ∈ S2 we have the foliation (Fξ, J) whose transversal
space is the twistor space Z. There is a subspace N ⊂ U ⊂ H1(A•) of the versal
deformation space of (Fξ, J) of real deformations. These are the deformations J t
for which ς(J t) = −Jt. By straightforward averaging one can choose the family of
compatible Sasakian structures in Proposition 2.2 (gt, ηt, ξ,Φt) to satisfy

(87) ς∗gt = gt, ς∗ηt = −ηt, ς∗ξ = −ξ, ς∗Φt = −Φt,

for t ∈ N. In particular, we also have ς∗ωT = −ωT . For t ∈ N with respect
to (gt, ηt, ξ,Φt) we have ReH1(A•) = ReH1

A
(ξ) for the tangent space to N at 0.

Therefore (Fξ, J t) = (Z, J t) has a Kähler structure ωTt , with ω
T
t ∈ π

2mc1(Fξ, J0)

depending smoothly on t ∈ N and Ricci(ωT0 ) = 4mωT0 . Since the leaf space is an
orbifold we will denote the transversal Kähler space by (Z, J t, ωt).

Let g be the Lie algebra of quaternionic automorphisms of (M̂, ĝ). By the twistor
correspondence, g ∼= {X ∈ hol(Z, J0)|ς∗X = X}. Since g is a real form of hol(Z, J0),

g ⊗ C = hol(Z, J0). By Lemma 3.6 g ⊆ isom(M̂, ĝ, J). Thus g ⊆ isom(Z, ω0, J0).
Since (Z, ω0, J0) is Kähler-Einstein the results of Y. Matsushima [27] show that
isom(Z, ω0, J0) ⊂ g⊗ C is a real form, so g = isom(Z, ω0, J0).
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Recall that f ∈ C∞(Z,C) is a holomorphy potential if

∂#f := (∂f)# =
∑

i,j

∂f

∂zk
gkj

∂

∂zj

is holomorphic. We define the space of normalized holomorphy potential functions,

(88) Hg := {f ∈ C∞(Z,C) | f is Hamiltonian and

∫

f µg = 0}.

SupposeW ∈ Γ(T 1,0Z) is holomorphic with ReW = X ∈ g = {Y ∈ hol(Z, J0) | ς∗Y =
Y }, so LXω = 0. And let fW ∈ C∞(Z) be a symplectic Hamiltonian, with
∫

Z
fWµg = 0, that is

(89) X yω = dfW

Then

∂#fW =
1

2
(dfW +

√
−1J∗dfW )# =

1

2
(JX +

√
−1X) =

√
−1

2
W

From (87) and (89) we have ς∗dfW = −dfW , and
∫

Z
fW µg = 0 implies that ς∗fW =

−fW . Since Hg is the complexification of the real functions fW considered, we have
that ς∗f = −f for all f ∈ Hg.

There are Ft ∈ C∞(Z) depending smoothly on t ∈ N with

(90)
√
−1∂t∂tFt = Ricci(ωt)− 4mωt.

Since Ft is defined up to a constant, ς∗Ft = Ft + ct for t ∈ ReN. But
∫

(Ft −
ς∗Ft)µgt = 0, so ς∗Ft = Ft.

Define Ck,α(Z)sym to be the Hölder space of functions f with ς∗f = f . The
Monge-Ampère equation

(91) Ψ(ϕt, t) = log
( (ωt +

√
−1∂t∂tϕt)

2m−1

ω2m−1
t

)

+ 4mϕt = Ft,

is ς-invariant for t ∈ ReN, and Ψ defines a smooth map

(92) Ψ : Ck+2,α(Z)sym × ReN → Ck,α(Z)sym

The differential of (92) is

(93) DϕΨ(ϕ̇) =
(

−∆∂ + 4m
)

ϕ̇.

But it is a result of Y. Matsushima [27] that Hg = ker(∆∂ − λ), where λ =

4m is the Einstein constant. Thus DϕΨ : Ck+2,α(Z)sym → Ck,α(Z)sym is an
isomorphism. By the implicit function theorem, after possibly replacing N by a
smaller neighborhood of 0, for t ∈ N there is a ϕt ∈ Ck+2,α(Z)sym with Ψ(ϕt) = Ft,
and

(94) ω′
t = ωt +

√
−1∂t∂tϕt

is Kähler-Einstein. The well-known regularity results show that ϕt ∈ C∞(Z)sym.

Let π : Mt → Zt be the U(1)-bundle associated to either K
1
m

Zt
or K

− 1
2m

Zt
, de-

pending on whether (M, g) fibers over (M̂, ĝ) with generic SO(3) or Sp(1) fibers.
Choose the connection form on Mt to be η′t = ηt + dctϕt. Then from (94) one has
1
2dηt = ω′

t. We get a Sasaki-Einstein structure (g′t, η
′
t, ξ,Φ

′
t) on Mt where

(95) g̃′t = ω′
t(·,Φ′

t·) + η′t ⊗ η′t,

and Φ′
t is the lift of J t to ker η′t.
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By Theorem 2.10 for small t ∈ N, (M, g′t) has no compatible 3-Sasakian structure.
It remains to prove that the components in EED(g) of {v(gt) | v ∈ T0N} are pre-

cisely the original infinitesimal Einstein deformations {hβ | β ∈ H1
A
(ξ)}. Consider

the family (gt, ηt, ξ,Φt), t ∈ N of Proposition 2.2. Using the notation of Section 2.1
and differentiating in the direction of some v ∈ T0N we have

φαβ = 0(96)

φαβ =
√
−1hαβ(97)

hαβ =
√
−1Iαβ ,(98)

which follow from (39), (36) and (35) respectively. In the proof of Proposition 2.2
the basic cohomology class [ωTt ] is constant. Thus φ is an exact (1, 1)-form. We may
replace ηt with ηt + dcψt, so that using the same notation we have 1

2dη̇t = φ = 0.
The possible contact forms for a fixed Reeb vector field ξ and transversal complex

structure J t are ηt+d
cψt+dθt for basic functions ψt, θt ∈ C∞

b (M). See [39, Lemma

2.2.3], where we also use that RicT > 0, which implies that the basic cohomology
H1
b = H1(M,R) = {0}. And dθt is given by a gauge transformation exp(θtξ)

∗ηt,
which fixes basic tensors. Therefore, by adding a factor of dθt to ηt, we may arrange
that η̇t = 0.

We suppose now that we have chosen (gt, ηt, ξ,Φt), t ∈ N as such. Thus the
only component of h is hαβ =

√
−1Iαβ , which is a transversal infinitesimal Einstein

deformation. Differentiating (90) gives
√
−1∂b∂bḞt = 0.

Then differentiating (91) with respect to t gives
(

−∆∂ + 4m
)

ϕ̇t = 0,

and it follows that ϕ̇t = 0 at t = 0. Therefore (g′t, η
′
t, ξ,Φ

′
t) gives the same first

order Einstein deformation at t = 0 as (gt, ηt, ξ,Φt) which is hαβ =
√
−1Iαβ . �

4. Deformations on a 3-Sasakian manifold

4.1. Space of Deformations on a 3-Sasakian manifold. The space of Einstein
deformations on a 3-Sasakian manifold constructed in Section 2 has an interest-
ing structure. Suppose (M, g) has a 3-Sasakian structure with Reeb vector fields
ξ1, ξ2, ξ3 satisfying [ξi, ξj ] = −2εijkξk and space of Reeb fields S2.

For ξ ∈ S2 and β ∈ H1
A
(ξ) we define hβ,ξ ∈ EED(g), where hβ,ξ(X,Y ) =

gT (JβX, Y ) where we distinguish the particular Reeb vector field. We have the
following space of infinitesimal Einstein deformations

(99) E D(g) :=
∑

ξ∈S2

{hβ,ξ | β ∈ H1
A(ξ)} ⊆ EED(g)

We have a left action of Sp(1) on (M, g) generated by ξ1, ξ2, ξ3. Since Sp(1) acts
by isometries and on the space of Sasakian structures S2, it acts on E D(g), and all
the subspaces H1

A
(ξ), ξ ∈ S2, are isomorphic. The subspace H1

A
(ξ1) is preserved by

ξ1, so by elementary representation theory

dimR E D(g) = 2 dimC E D(g) ≥ 6 dimC H1
A(ξ1).

This Sp(1)-action acts on (C(M), J1, J2, J3) by quaternionic automorphisms.
That is, it preserves the bundle of quaternionic frames LSp(m)Sp(1)(C(M)). This
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lifts, via the spin structure to an action on L̃Sp(m)Sp(1)(C(M)) ⊂ LSpin(4m)(C(M))

if m is even or L̃Sp(m)×Sp(1)(C(M)) ⊂ LSpin(4m)(C(M)) if m is odd. The Killing

spinors are contained in the γm factor of S
+
4m of (6). Thus Sp(1) acts on the Killing

spinors via the representation of Sp(1) = SU(2) on γm = S2(µ2).
We will consider a principal subbundle E ⊂ LSp(m)Sp(1)(C(M)) with structure

group
(

Sp(m−1)×Sp(1)
)

Sp(1) generated by all the local frames considered in the
proof of Proposition 2.11. This subbundle is invariant under the isometric Sp(1)-
action. In order to determine the Sp(1) action on spinors we consider the spin
bundle

Σ = Ẽ ×(

Sp(m−1)×Sp(1)
)

Sp(1)
S
+
4m.

Importantly, the subspace of spinors, considered in the proof of Proposition 2.11,
with precisely one vector in SpanC{ε2m−1, ε2m} is preserved by

(

Sp(m − 1) ×
Sp(1)

)

Sp(1).
The Sp(1) action on E is easily computed. Given a ∈ Sp(1) and u ∈ E, write

a∗u = uψ(a), then

ψ(a) =
(

(·, kak−1), a) ∈
(

Sp(m− 1)× Sp(1)
)

Sp(1)

is the factor acting non-trivially on the component of spinors with one vector in
SpanC{ε2m−1, ε2m}. It will be useful that the spin bundle has the decomposition
(6) with the Sp(1)-action acting on the γm, γm−2, . . . factors in the usual way with
γm being the space of Killing spinors.

We will need a lemma in the proofs of the main theorems.

Lemma 4.1. Suppose ξ, ξ′ ∈ S2. If ξ 6= ξ′ and ξ 6= −ξ′, then

{hβ,ξ | β ∈ H1
A(ξ)} ∩ {hβ,ξ′ | β ∈ H1

A(ξ
′)} = {0}.

Suppose thatm = 2, ξ1, ξ2, ξ3 ∈ S2 are linearly independent, and βi ∈ H1
A
(ξi), i =

1, 2, 3 are non-zero. Then

hβ1,ξ1 + hβ2,ξ2 + hβ3,ξ3 6= 0.

Proof. Let σk, k = 0, . . . ,m be the Killing spinors as in the proof of Proposition 2.11
which span the representation γm of Sp(1). More precisely, γm ∼= S2(C2) where
we identify Sp(1) ∼= SU(2). And under this identification each σk is identified with
(

m
k

)

ek1e
m−k
2 where e1, e2 are the standard basis of C2. By acting by Sp(1) we may

suppose that ξ is ξ1.
By Proposition 2.11 the elements hβ,ξ preserve the spinors corresponding to the

span of em1 and em2 but not the remaining. Let g ∈ SU(2) be such that gξ = ξ′.
Then the elements hβ,ξ

′

preserve precisely the spinors g(em1 ) and g(em2 ). This is the
same subspace as that spanned by em1 and em2 if and only if g is in the subgroup
generated by the elements

[

u 0
0 u

]

, such that |u| = 1, and J =

[

0 1
−1 0

]

.

This is precisely the subgroup fixing ξ1 ∈ RP
2.
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For the second part recall that γ2 is a real representation, with real Killing
spinors

(100)

ς0 = 1 + ε1 ∧ ε2 ∧ ε3 ∧ ε4
ς1 = iε1 ∧ ε2 + iε3 ∧ ε4
ς2 = i− iε1 ∧ ε2 ∧ ε3 ∧ ε4.

Again we may assume that ξ1 is the standard Reeb vector field, thus hβ1,ξ1 preserves
σ0 and σ2. Suppose ξ2 = aξ1 and ξ3 = bξ1 where a, b ∈ Sp(1). By assumption
SpanR{σ0, σ2}∩SpanR{aσ0, aσ2} is 1-dimensional, and let σ be a non-zero element.
Then σ /∈ SpanR{bσ0, bσ2}. Then

L(hβ1,ξ1 + hβ2,ξ2 + hβ3,ξ3 , σ) = L(hβ3,ξ3 , σ) 6= 0

by Proposition 2.11. �

Proposition 4.2. Let (M, g) be 3-Sasakian with dimM = 4m− 1. Suppose ξ, ξ′ ∈
S2 with ξ 6= ξ′ and ξ 6= −ξ′. And suppose β ∈ H1

A
(ξ) and β′ ∈ H1

A
(ξ′) are non-zero,

then

hβ,ξ + hβ
′,ξ′ ∈ E D(g)

is non-zero and preserves a 1-dimensional subspace of Killing spinors if m = 2 and
no Killing spinors if m > 2.

Proof. We may suppose that ξ = ξ1 and ξ′ = cos(t)ξ1 + sin(t)ξ2, 0 < t < π, after
possibly transforming by Sp(1). Then ξ′ = exp( t2π)∗ξ1. Set a = exp( t2π) ∈ Sp(1).

By Lemma 4.1 hβ,ξ + hβ
′,ξ′ 6= 0. Set h1 = hβ,ξ and hβ

′,ξ′ = ah2 with h2 ∈ H1
A
(ξ1).

Suppose

0 = L(hβ,ξ + hβ
′,ξ′ , σ)(X) = L(h1 + ah2, σ)(X)

= L(h, σ)(X) + aL(h2, a
−1σ)(a−1σX).

(101)

The component of interest in this is given by (77) which is

(102) − Φ1h(X)ξ1 · σ − h(X)∂r · σ − Φ′h′(X)ξ′ · σ − h′(X)∂r · σ,
where for shorthand h = h1, h

′ = hβ
′,ξ′ and Φ′ = cos(t)Φ1 + sin(t)Φ2. Here

σ = c0σ0 + · · ·+ cmσm is an arbitrary Killing spinor.
We consider the case m > 2 first. We compute (102) using the notation in the

proof of Proposition 2.11. In particular,

σk =
1

k!
ϑk +

1

(k − 1)!
ϑk−1 ∧ ε2m−1 ∧ ε2m.

The first two terms of (102) with σ = σk are

(103)
2
√
2
√
−1

(k − 1)!

(

ϑk−1 ∧ Φ2h(X)0,1 ∧ ε2m + ϑk−1 ∧ h(X)1,0 ∧ ε2m−1

)

.

The second two terms are

−
(

cos(t)Φ1h
′(X) + sin(t)Φ2h

′(X)
)(− cos(t)√

2
(ε2m+ ε2m) +

√
−1 sin(t)√

2
(ε2m−1 − ε2m−1)

)

σk

− h′(X)

√
−1√
2
(ε2m − ε2m)σk.

(104)



DEFORMATIONS OF KILLING SPINORS 31

After a routine computation we get that (102) with σ = σk is

−
√
−1

√
2 sin2(t)

k!
h′(X)1,0 ∧ ε2mϑk +

√
−12

√
2 cos2(t)

(k − 1)!
∧ Φ2h

′(X)1,0 ∧ ε2m ∧ ϑk−1

+

√
−12

√
2 cos2(t)

(k − 1)!
h′(X)1,0 ∧ ε2m−1ϑ

k−1 −
√
−1

√
2 sin2(t)

(k − 2)!
Φ2h

′(X)1,0 ∧ ε2m−1 ∧ ϑk−2

+

√
2 sin(t) cos(t)

k!
h′(X)1,0ε2m−1ϑ

k +
2
√
2 sin(t) cos(t)

(k − 1)!
Φ2h

′(X)1,0 ∧ ε2m−1 ∧ ϑk−1

+
2
√
2 sin(t) cos(t)

(k − 1)!
h′(X)1,0 ∧ ε2m ∧ ϑk−1 +

√
2 sin(t) cos(t)

(k − 2)!
Φ2h

′(X)1,0 ∧ ε2m ∧ ϑk−2

+

√
2 sin(t) cos(t)

k!
Φ2h

′(X)1,0 ∧ ε2m ∧ ϑk +
√
2 sin(t) cos(t)

(k − 2)!
h′(X)1,0 ∧ ϑ2m−1 ∧ ϑk−2

−
√
−1

√
2 sin2(t)

k!
Φ2h

′(X)1,0 ∧ ε2m−1 ∧ ϑk −
√
−1

√
2 sin2(t)

(k − 2)!
h′(X)1,0 ∧ ε2m ∧ ϑk−2

+

√
−12

√
2

(k − 1)!
Φ2h(X)1,0 ∧ ε2m ∧ ϑk−1 +

√
−12

√
2

(k − 1)!
h(X)1,0 ∧ ε2m−1 ∧ ϑk−1.

Consider the image of a general Killing spinor σ = c0σ0 + · · ·+ cmσm under (102).
In particular, consider its component of degree 2k + 2 given by this formula for
0 ≤ k ≤ m − 2. From the ε2m and ε2m−1 components we get the following
equations after some manipulation:

0 = ck(
√
2 sin(t)Φ′h′(X))

+ ck+1(2
√
2 cos2(t)h′(X)− 2

√
2 sin(t) cos(t)Φ3h

′(X) + 2
√
2h(X))

+ ck+2(
√
2 sin(t)Φ′h′(X))

and

0 = ck(
√
2 sin(t)Φ′h′(X))

+ ck+1(−2
√
2 cos2(t)h′(X) + 2

√
2 sin(t) cos(t)Φ3h

′(X)− 2
√
2h(X))

+ ck+2(
√
2 sin(t)Φ′h′(X))

From these we get ck + ck+2 = 0 and ck+1(cos(t)Φ
′h′(X) + Φ1h(X)) = 0, which

implies ck+1 = 0 from Lemma 4.1. This implies σ = 0 when m > 2.
If m = 2 then we have c1 = 0 and c0 + c2 = 0. So the only possible Killing

spinors preserved by hβ,ξ+ hβ
′,ξ′ are spanned by the real spinor ς2. And one easily

sees that L(hβ
′,ξ′ , ς2) = 0 since exp(tk)ς2 = ς2. �

Recall that γ2 is the real representation of Sp(1), and easy calculation shows
that the standard basis of sp(1) acts as follows in the basis ς0, ς1, ς2

i =





0 0 2
0 0 0
−2 0 0



 , j =





0 0 0
0 0 2
0 −2 0



 , k =





0 −2 0
2 0 0
0 0 0



 .

Proposition 4.3. Let (M, g) be a 7-dimensional 3-Sasakian manifold. Suppose
ξ1, ξ2, ξ3 ∈ S2 are linearly independent and βk ∈ H1

A
(ξk) k = 1, 2, 3 are each non-

nonzero. Then

hβ1,ξ1 + hβ2,ξ2 + hβ3,ξ3 ∈ E D(g)
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is non-zero and preserves no Killing spinors

Proof. By Lemma 4.1 hβ1,ξ1 + hβ2,ξ2 + hβ3,ξ3 is non-zero, so we need to show it
preserves no Killing spinors.

For simplicity we assume that ξk, k = 1, 2, 3 is an orthonormal basis, which
we may assume to be the standard basis after a possibly acting by Sp(1). By
considering the Sp(1)-action on γ2, we see that H

1
A
(ξ2) preserves ς1, ς2 and H1

A
(ξ3)

preserves ς0, ς1. Let σ = c0ς0 + c1ς1 + c2ς2, and denote hξk = hβk,ξk Then suppose

0 =L(hβ1,ξ1 + hβ2,ξ2 + hβ3,ξ3 , σ)

=c1L(h
β1,ξ1 , ς1) + c0L(h

β2,ξ2 , ς0) + c2L(h
β3,ξ3 , ς2)

=− c1(Φ1h
ξ1(X)ξ1 · ς1 + hξ1(X)∂r · ς1)

− c0(Φ2h
ξ2(X)ξ2 · ς0 + hξ2(X)∂r · ς0)

− c2(Φ3h
ξ3(X)ξ3 · ς2 + hξ3(X)∂r · ς2).

(105)

Routine calculation gives

Φ1h
ξ1(X)ξ1 · ς1 + hξ1(X)∂r · ς1 = 2

√
2(Φ2h

ξ1(X)1,0 ∧ ε4 + hξ1(X)1,0 ∧ ε3)
Φ2h

ξ2(X)ξ2 · ς0 + hξ2(X)∂r · ς0 = 2
√
2
√
−1(Φ2h

ξ2(X)1,0 ∧ ε3 + hξ2(X)1,0 ∧ ε4)
Φ3h

ξ3(X)ξ3 · ς2 + hξ3(X)∂r · ς2 = 2
√
2(Φ2h

ξ3(X)1,0 ∧ ε3 − hξ3(X)1,0 ∧ ε4)
Thus we have

0 =− c12
√
2(Φ2h

ξ1(X)1,0 ∧ ε4 + hξ1(X)1,0 ∧ ε3)
− c02

√
2
√
−1(Φ2h

ξ2(X)1,0 ∧ ε3 + hξ2(X)1,0 ∧ ε4)
− c22

√
2(Φ2h

ξ3(X)1,0 ∧ ε3 − hξ3(X)1,0 ∧ ε4).
The ε3 component gives

c1Φ1h
ξ1(X)− c0Φ2h

ξ2(X) + c2Φ3h
ξ3(X) = 0.

Lemma 4.1 now implies that c0 = c1 = c2 = 0. �

This proves Corollary 4. By Theorem 3.3 for any β ∈ ReH1
A
(ξ) the deformation

hβ,ξ is integrable. By Proposition 4.2 for m > 2, and Proposition 4.3 for m = 2
there are elements in the span of these elements preserving no Killing spinors.

4.2. Toric 3-Sasakian manifolds. The examples of toric 3-Sasakian 7-manifolds
from [9] provide interesting examples of Einstein deformations, integrable and in-
finitesimal, preserving various numbers of Killing spinors. This will give non-trivial
examples of the theorems of the previous sections.

Definition 4.4. A 3-Sasakian manifold (M, g), dimM = 4m− 1, is toric if there
is a Tm ⊆ Aut(M, g, ξ1, ξ2, ξ3).

Remark 4.5. Note that a toric 3-Sasakian manifold is generally not toric as a
Sasakian manifold.

The isometry group of a 3-Sasakian manifold is

Aut(M, g, ξ1, ξ2, ξ3)× Sp(1) or Aut(M, g, ξ1, ξ2, ξ3)× SO(3),

where the Sp(1) or SO(3) factor is generated by the Reeb vector fields.
Toric 3-Sasakian manifolds have been constructed from 3-Sasakian quotients

by torus actions on S4n−1 [7, 9], with the 3-Sasakian structure given by right
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Cb2−1

Rb2−1

T 3

T 3
⋊ Z2

T 2 × Sp(1)

Figure 1. Space of Sasaki-Einstein metrics

multiplication by Sp(1). A subtorus T k ⊂ T n is determined by a weight matrix
Ωk,n ∈ Mat(k, n,Z). There are conditions on Ω, C. Boyer, K. Galicki, B. Mann, E.
Rees, 1998 [9], that imply the moment map

µ : S4n−1 → (tk)∗ ⊗ R
3

is a submersion, and further that the quotient

MΩk,n
= S4n−1//T k = µ−1(0)/T k

is smooth. When n = k + 2 the above authors showed there are infinitely many
weight matrices in Mat(k, n,Z) for k ≥ 1 giving infinitely many 7-manifolds MΩk,n

for each b2 = k ≥ 1.

Lemma 4.6 ([38]). Let Z be the twistor space of a toric 3-Sasakian 7-manifold M ,

then H1(Z,ΘZ) = H1(Z,ΘZ)
T 2

and

dimCH
1(Z,ΘZ) = b2(M)− 1 = k − 1.

Thus Z has a local b2(M)− 1-dimensional space of deformations.

If b2(M) ≥ 1, then the maximal torus of Sasakian automorphisms, T 3 ⊂ Aut(M, ξ1),
is 3-dimensional. Theorem 3.1 implies the following.

Theorem 4.7. Let (M, g) be a toric 3-Sasakian 7-manifold. Then (M, g) has a 3-
dimensional space of Killing spinors spanned by σ0, σ1, σ2. Then g is in an effective
complex b2(M) − 1-dimensional family {gt}t∈U, U ⊂ Cb2(M)−1 with g0 = g, of
Sasaki-Einstein metrics where gt is not 3-Sasakian for t 6= 0.

Therefore the deformations preserve a two dimensional subspace of Killing spinors
spanned by σ0, σ2.

The deformation space of Sasaki-Einstein metrics with their isometry groups is
illustrated in Figure 1.

For a given ξ ∈ S2, the space of infinitesimal Einstein deformations {hβ,ξ | β ∈
H1

A
(ξ)} ⊆ EED(g) integrate to Einstein deformations preserving Killing spinors

σ0 and σ2 but not σ1. Note that the space E D(g) defined in (99) is spanned by
integrable Einstein deformations. Theorem 2 now follows from Proposition 4.2 and
Proposition 4.3.
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