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DEFORMATIONS OF KILLING SPINORS ON SASAKIAN AND
3-SASAKTAN MANIFOLDS

CRAIG VAN COEVERING

ABSTRACT. We consider some natural infinitesimal Einstein deformations on
Sasakian and 3-Sasakian manifolds. Some of these are infinitesimal deforma-
tions of Killing spinors and further some integrate to actual Killing spinor de-
formations. In particular, on 3-Sasakian 7 manifolds these yield infinitesimal
Einstein deformations preserving 2, 1, or none of the 3 independent Killing
spinors. Toric 3-Sasakian manifolds provide non-trivial examples with inte-
grable deformation preserving precisely 2 Killing spinors. Thus in contrast to
the case of parallel spinors the dimension of Killing spinors is not preserved
under Einstein deformations but is only upper semi-continuous.

INTRODUCTION

Let M be an n-dimensional Riemannian spin manifold with spinor bundle 3. A
Killing spinor is a non-trivial section ¢ € T'(X) with

(1) Vxt) =X -4,

for some constant ¢, where V is the Levi-Civita connection, X any tangent vector,
and X -1 denotes Clifford multiplication. An easy computation shows that Ricg, =
4(n — 1)c?g. Thus ¢ must be either purely imaginary in which case M is non-
compact, ¢ = 0 with ¥ a parallel spinor and M is Ricci-flat, or ¢ is real and M
is positive Einstein and compact assuming completeness. In the latter case 9 is a
real Killing spinor. We will only consider real Killing spinors with ¢ # 0. Since ¢
is rescaled by homotheties of the metric, only its sign is of significance. We denote
by N, (respectively N_) the dimension of the space of Killing spinors with ¢ > 0
(respectively ¢ < 0).

Killing spinors are of interest in physics in supergravity and string theories [11].
But they are also of interest purely mathematically. See [3] for a survey. Much
work has been done in classifying manifolds admitting a Killing spinor. C. Bér [2]
classified simply connected manifolds admitting a real Killing spinor in terms of the
underlying geometry of (M, g). The classification is given in terms of the holonomy
of the metric cone (C(M),g), C(M) =Ry x M, g = dr*+1r?g. The argument in [2]
is essentially that the connection Vx — ¢X on X is identified with the Levi-Civita
connection V of g on X (the spin bundle of C(M) when n is even, and half-spin
bundle when n is odd). Then the classification is in terms of irreducible holonomies
admitting a parallel spinors [41]. See Table [ for the classification. Therefore, just
as for the irreducible reduced Ricci-flat holonomies there are two cases occurring in
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TABLE 1. real Killing spinors

[dimM | Ny | N_ [ Hol(C(M)) | geometry |

n 2lz] [ 2lz] Id n-sphere
dm—-11| 2 0 SU(2m) Sasaki-Einstein
dm+1 1 1 | SU(@2m + 1) | Sasaki-Einstein
dm—1 | m+1| 0O Sp(m) 3-Sasakian

6 1 1 Go nearly Kahler

7 1 0 Spin(7) weak Go

infinitely many dimensions, the Sasaki-Einstein and 3-Sasakian manifolds, and two
exceptional cases, nearly Kahler and weak G5 in dimensions 6 and 7 respectively.

Nearly Kéahler structures, introduced by A. Gray in the context of weak holo-
nomy, are almost Hermitian structures (g, J, w) with Vx J(X) = 0 for any X € TM.
Note that for a proper nearly Kéhler structure, i.e. not Kéhler, the almost complex
structure J is not integrable and dw # 0. When n = 6 the torsion of the SU(3)-
structure is contained in a 1-dimensional subbundle. In [31] it is shown that every
nearly Kéhler manifold is locally the Riemannian product of Ké&hler manifolds,
3-symmetric spaces, twistor spaces over positive quaternion-Kéhler manifolds and
6-dimensional nearly Kéhler manifolds. Thus most questions about nearly Kéahler
manifolds reduces to proper 6-dimensional nearly Kahler manifolds.

A weak G2 manifold is a 7-manifold with a vector cross product coming from
the imaginary octonians, or equivalently a stable 3-form o € Q3 with do = —Ax o
with A # 0 a constant. The form ¢ defines a reduction of the structure group of M
to Gy and thus a metric g, as Go C SO(7), which is Einstein with scalar curvature
5§ = %1/\2. Again, the torsion of the G-structure lies in a 1-dimensional subbundle.
See [16] for results on weak G2 manifolds including a classification of homogeneous
examples.

Most interesting is perhaps n = 7 for which, when M is simply connected and
not of constant curvature, Ny = 1,2, or 3, in which case (M, g) is said to be of type
1, 2, or 3 respectively. Recall that the spinor representation S of Spin(7) is real,
S =5r ® C. Thus M has a real spinor bundle ¥g, and the space of solutions to
([ is the complexification of solutions in I'(Xg). Each section ¢ € I'(Xg) defines a
Ga-structure on M with stable 3-form oy, and there is a bijective correspondence
between sections of P(Xg) and Ga-structures with metric g and given orientation.
If ¢ is a representative of such a section with || = 1, then oy defines a weak
Ga-structure, doy, = —A % 0y, if and only if ¢ satisfies (), with A = 8c. If (M, g)
is type 1, then there is a unique 3-form inducing the given metric and orientation.
If it is of type 2, then (M, g) is Sasaki-Einstein but not 3-Sasakian and there is
a space of compatible 3-forms parameterized by RP'. And if it is of type 3, then
(M, g) is 3-Sasakian and has a space of compatible 3-forms parameterized by RP%,
See [16].

Note that an easy computation of the curvature of the warped product shows
that (C(M),g) is Ricci-flat if and only if (M, g) is Einstein with Ricy, = (n — 1)g.
Thus the classification as in Table [l gives a natural scaling in which ¢ = :I:% in ()
and s = n(n —1).

We consider deformations of the Killing spinor equation () under deformations
of g, both infinitesimal and genuine. As solutions to () imply that (M,g) is
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Einstein we consider Einstein deformations. The beginnings of a general theory of
deformations of Killing spinors was developed by M. Wang [42], making use of the
work of J.-P. Bourguignon and P. Gauduchon [6] on the variations of spinors under
metric variations.

More recently there has been some work on the two exceptional cases in Table[Il
In [28] and [30] it is shown that the space of infinitesimal Einstein deformations of
a proper nearly Kéhler 6-manifold consists of eigenspaces of the Laplace operator
A restricted to the space E of co-closed primitive (1,1)-forms. If E()\) denotes the
M-eigenspace of A restricted to F, then the space of essential infinitesimal Einstein
deformations is E(2) ¢ E(6) @ E(12). The space of infinitesimal deformations of
nearly Kéhler structures is E(12). Besides S®, which has no Einstein deformations
the only examples of proper nearly Kéahler 6-manifolds are 3-symmetric spaces,
CP? = S0O(5)/ U(2), F(1,2) = SU(3)/U(1) x U(1), and S° x §% = SU(2) x SU(2) x
SU(2)/A. In [29] it is shown that the nearly Kéhler structures on CP? and S® x 3
have no infinitesimal Einstein deformations, and on F(1,2) E(2) and E(6) vanish
while E(12) is an 8-dimensional space.

Similar results are known for weak G5 manifolds. In [I] a similar decomposition
of the infinitesimal Einstein deformations on a weak G2 manifold are given. First
recall that a Gz-structure induces a decomposition of the 3-forms into irreducible
Ga-representations A% = AS@®AZ® A3,. And there is a map ¢ : SZ(T*) — A3, which
on a decomposable element @ S is L(a® f) = aA (B 10)+ BA(a10), which is an
isomorphism onto A3;. It is proved in [I] that the essential infinitesimal Einstein
deformations is given by the direct sum

E(16) ® E(4) ® E(8),

where E(16) = {y € Q3| xdy = —4v}, E(4) = {y € Q3;| xdy = 27}, and E(8) =
{v € Q3,|dd*~y = 8y}. The notation E()) indicates that these are subspaces of the
A-eigenspace of A. The space E(16) is the subspace of infinitesimal deformations
of weak G-structures, or more precisely, those not fixing the metric and deforming
the Killing spinor. This space is computed on the normal homogeneous examples:
the isotropy irreducible space SO(5)/SO(3), the pinched metric on S7, and the
second Einstein metric on the Aloff-Wallach space N(1,1) = SU(3)/U(1). The
first two cases have no infinitesimal Einstein deformations, while for the third the
infinitesimal Einstein deformations correspond to E(16) which is 8-dimensional.
These results might lead one to suspect that there might be some stability for
Killing spinors under Einstein deformations, either infinitesimal or integrable. Fur-
thermore, for the case ¢ = 0 in (), i.e. parallel spinors, there are strong stability
results [42] B3]. Recall that a simply-connected, spin, irreducible Riemannian man-
ifold (M, g) admits a parallel spinor if and only if the holonomy Hol(g) = G where
G = SU(m), Sp(m), Ga, or Spin(7). Define a G-manifold to be a connected oriented
manifold of dimension 2m,4m,7 or 8 respectively with a torsion-free G-structure
with G from this list. This means Hol(g) C G. Thus a G-manifold M is Ricci-flat,
and we define W¢g to be the moduli space of torsion-free G-structures on M, Mg
the moduli space of G-metrics, i.e. metrics induced by a torsion-free G-structure,
and My the moduli space of Ricci-flat metrics on M. Here the moduli spaces are
defined by quotienting by diffeomorphisms isotopic to the identity. We have the
following result of J. Nordstrém extending similar results of M. Wang [42].
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Theorem 1 ([33]). Let M be a compact G-manifold with G = SU(m), Sp(m), Ga,
or Spin(7). Then Mg is open in My, actually a union of connected components.
Furthermore, Mg is a smooth manifold and the natural map

m: Wg = Mg
that sends a torsion-free G-structure to the metric it defines is a submersion.

This article will show that there is no analogous result for Killing spinors. Un-
der Einstein deformations N, N_ are merely upper semi-continuous and can drop
under infinitesimal and integrable Einstein deformations. In particular, the toric
3-Sasakian 7-manifolds of [9] have interesting infinitesimal Einstein deformations.
Let H'(A®) be the first cohomology of the complex (B0), that is the first order
deformations of the complex structure of the Reeb foliation .#¢:. We know that
dimg H'(A®) = ba(M) — 1 if (M, g) is a toric 3-Sasakian 7-manifold [38].

Theorem 2. Let (M,g) be a 3-Sasakian 7-manifold with dime H'(A®) > 0, e.g.
a toric 3-Sasakian 7-manifold with bo(M) > 2. Thus (M,g) has three linearly
independent Killing spinors. Then there exist infinitesimal Einstein deformations
of g preserving two, one, and zero dimensional subspaces of the Killing spinors.

It is unknown whether the infinitesimal Einstein deformations preserving only
1-dimensional subspaces of Killing spinors or none are integrable. But in Section [3]
some infinitesimal Einstein deformations are proved to be integrable. For example
the infinitesimal deformations of a toric 3-Sasakian 7-manifold in the theorem pre-
serving a 2-dimensional subspace of Killing spinors can be shown to be integrable.

Theorem 3. Let (M, g) be a toric 3-Sasakian 7-manifold, so Ny = 3. There exists
an effective space U C C2M) =1 of Einstein deformations of g = go. Fort € U and
t #0, g is Sasaki-Einstein but not 3-Sasakian. Thus g:,t # 0, admits only a two
dimensional space of Killing spinors (N =2, N_ =0).

We also prove in Theorem that certain infinitesimal Einstein deformations
on a general 3-Sasakian manifold are integrable. In Section Il we see that this has
implications for the local premoduli space of Einstein metrics.

Corollary 4. Suppose (M, g) is 3-Sasakian with dim¢ H'(A®) > 0, e.g. a toric 3-
Sasakian T-manifold with bo(M) > 2. Then either there exist Einstein deformations
of g preserving no Killing spinors, or the Einstein premoduli space is singular.

In Section [I] we review necessary background on the deformations of Einstein
metrics, the variation of spin structures, and deformations of Killing spinors. In
Section 2l we show that infinitesimal deformations of the transversal complex struc-
ture of a Sasaki-Einstein manifold give infinitesimal Einstein deformations. We
then give the basic results on these deformations regarding the behavior of Killing
spinors, on Sasaki-Einstein and 3-Sasakian manifolds. In Section [3] we give some
results on when these infinitesimal Einstein deformations integrate to genuine Ein-
stein deformations. In Section £ we study the space of these infinitesimal Einstein
deformations on a 3-Sasakian manifold more closely, and we prove Theorem 2] The-
orem[3 and Corollary[dl In Section[£2]the examples of toric 3-Sasakian 7-manifolds
from [9] provide non-trivial examples of the above results.

Acknowledgements. I would like to thank the Max Planck Institute for Mathe-
matics for their hospitality and excellent research environment. Most of the research
for this article was done during a visit during the academic year 2011-2012.
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1. PRELIMINARIES

1.1. Spinors. We review the explicit construction of the spin representations via
explicit representations of the Clifford algebras Cl(n), For more details see [23]
and [3]. These representation will give the complex representations of the complex
Clifford algebras Cl(n) = Cl(n) ® C. Suppose V is a real vector space of dimension
n = 2m with a metric g and compatible almost complex structure I : V.— V. We
have the decomposition V @ C = V1% @ V%1 and the spinor space is

S(V) := A*0V = A*V10,

The representation ¢ : C1(V) — End(S(V)) is defined by its action on V' & C. For
v € V10 define c(v) := /20 A -, and for w € V0! define ¢(w) := —v/2w 1, where
the contraction is induced by the metric g on V extended complex bilinearly.

Recall we have the splitting C1(V)) = Clg(V)®Cly (V) into even and odd elements
making Cl(V') into a superalgebra, that is

CL.(V)-Cly(V) CCL(V) with t =r+s mod 2.

We have Pin(n) C Cl(n), where Pin(n) is the universal cover of O(n), and Spin(n) C
Clp(n) is the universal cover of SO(n).

The representation has a splitting preserved by the superalgebra structure of
Cl(V)

(2) S(V) = Som = 53, ® Sy,
that is Clo(V) - 8%, C S, while Cl,(V) - S5, C SF,,. The restriction of (V) to

2m =
Spin(2m) is the spin representation, which splits into components in (2]) which are
irreducible.
As in [41], we define 53, to be the half-spin representation with highest weight
%(:1:1 + -+ xy,), while 55, has highest weight %(:1:1 + -+ Typ_1 — Tp), with the
usual choice of fundamental weights. If {e1, ..., €2, } is an orthonormal basis of V,

2
then SQim are the +1 and —1 eigenspaces of w¢ = (\/—1)’" +2m€1 e o

Remark 1.1. Note that this differs from the convention in [23], where S  are
defined as the +1 and —1 eigenspaces of wg = (s/—l)mel -+ -eam, by a factor of
(_1) m(7;+1) '

Explicitly, we have

S;_m — Am,OV EB Am72,OV @ e

3
) Som = A"V ATV g

For the odd dimensional case, n = 2m + 1, let {e1, ..., €2, } be an orthonormal
basis of V' and define V' = V & Regmi1, with egpy1 unit length and orthogonal
to V. We define ¢ : CI(V’') — End(S(V)) as follows. If v € V we let /(v) :=
c(v) € End(S(V)) as above, and we define ¢(eami1) = —(—1)"2 c(ey - - am) €
End(S(V)). Note that C1(V’) = Cl(2m + 1) has two irreducible complex represen-
tations, each of dimension 2™, and changing the sign of ¢/(e2,+1) gives the other
representation of C1(V').

Alternatively, let V' = Vj @ Res,, be an orthogonal sum. Then

(4) Cl(Ve) & Clo(V) -5 End(S*(V)),



6 CRAIG VAN COEVERING

where the isomorphism ~ : Cl(V}) & Clo(V) is given by e; — €; - eam,. The choice
of half-spin representations S* (V') gives the two representations of C1(Vy) denoted
by 5%, ,. The restrictions of S5, ; to Cly(Vy) are identical, thus restricting to
Spin(2m — 1) C Clg(Vh) gives the complex spin representation Sa,,—1, without a
superscript.

Let (M,g) be an oriented Riemannian manifold with a spin structure. We
have the principal bundle of orthonormal frames Lgo(,) with the spin structure a
Spin(n) principal bundle Lgpin(,) with 2-fold cover 6 : Lgpinm) — Lso(n), restrict-
ing to the 2-fold cover Spin(n) — SO(n) on each fiber. The spin bundle is ¥ =
LSpin(n) X Spin(n) Sp. Ifn=2mthen X = EJF@Ei, where ©F = LSpin(n) X Spin(n) S;ll:
When n is odd there is a unique spinor bundle ¥, although there are two choices
as a bundle of Clifford modules over C1(T'M).

Since Killing spinors correspond to a holonomy reduction we will make use of
the decomposition of some restrictions of the spinor representation S,. Let .,
be the usual representation of SU(m) C SO(2m) on C™. Since SU(m) is simply
connected, SU(m) C SO(2m) lifts to an embedding SU(m) C Spin(2m) under
6 : Spin(2m) — SO(2m). We have from our conventions

Samlsu(m) = A" pm & A™ iy, @ - -
Somlsuim) =A™ i ® APy @ - -

()

We will need to consider the spin representation restricted to sp(m) @ sp(1) C
SO(4m). Let vay, be the complex representation of Sp(m) given by Sp(m) C
SU(2m). Contraction by the symplectic form gives A¥vy,, = Ap @ AF 21y, for
2 > k > m, as Sp(m)-representations where Ay, is the irreducible representation of
Sp(m) with highest weight 21 + - -+ + xj. It is an elementary result (see [I0, Prop.
4.14])that an irreducible representation of Sp(m) x Sp(1) is of the form V&W where
V and W are irreducible representations of Sp(m) and Sp(1) respectively. A little
more work shows that

(6) SIm'Ep(m)EBsp(l) = Ao®7m S?) A2®7m—2 ®---

Samlepm@ss(1) = MOYm-1 B A3@Ym-3® - --

where v, = S¥(u2) is the irreducible representation of SU(2) = Sp(1) of dimension
k+ 1. Tt follows from (@) that for m even the inclusion Sp(m) - Sp(1) = Sp(m) x
Sp(1)/Z5 < SO(4m) lifts under @ : Spin(4m) — SO(4m) to Sp(m) x Sp(1)/Zs C
Spin(4m). While when m is odd =1 (Sp(m) - Sp(1)) = Sp(m) x Sp(1) C Spin(4m),
which contains (—1,—1) = —1 € Spin(4m).

1.2. Deformation of Einstein metrics and Killing spinors.

1.2.1. Deformation of Einstein metrics. We describe what we will need from the
theory of deformations of Einstein metrics and deformations of Killing spinors. For
more on the deformation theory of Einstein metrics see [B, ch. 12] or [20]. See [6]
for the apparatus for working with spinors under metric variations, and see [42] for
this applied to the Killing spinor equation. In this article M denotes a compact
connected n-dimensional manifold.

Definition 1.2. Let g be an Finstein metric on M. A family g, of Einstein metrics
on M of fived volume with go = g depending smoothly ont € U C RF is an Einstein
deformation of g.
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Because Einstein metrics are critical points of the total scalar curvature func-
tional g — |, a1 Sg Mg Testricted to metrics of a fixed volume, a deformation of Ein-
stein metrics has fixed scalar curvature s = s,4,. Thus

(7) Ricg, = Mgy,

where A = =. We will consider positive scalar curvature Einstein metrics, and it

will be convenient for us to assume A =n — 1.

Let .. be the space of Riemannian metrics on M of fixed volume c. This is acted
upon by the diffeomorphism group Z. A local description of the quotient .#./%
is given by D. Ebin’s Slice Theorem [12]. The tangent space to .#, at g denoted
by Ty.#. consists of symmetric 2 tensors h € I‘(S2 T*M) with fM trh g = 0. The
tangent space to the orbit Z*g consists of all Lie derivatives £xg = 20; X > where
X" is the 1-form dual to a the vector field X and

1
* b b b
(8) (65X7)ij = E(Vin + Vin),
with V the Levi-Civita connection. One can show that Imd; C Ty.Z. is closed,
and

(9) Ty M. =1Im 5; &) (Tg//lc N ker 6),
where (0gh); = —V7hj; is adjoint to 7.
Let h = %hzo, then differentiating ([0 gives
(10) 2E,(h) = (A+2L— 850 — Vdtrg)h =0,
where (Lh);; = Rikjlhkl and A = V*V is the rough Laplacian.
Definition 1.3. Let (M,g) be an FEinstein manifold. A symmetric 2-tensor h €
F(82 T*M) is an infinitesimal Einstein deformation of g if h satisfies ({I0) and

fM (tré),h,ug = 0. The space of infinitesimal FEinstein deformations is denoted by
ED(g).

An infinitesimal Einstein deformations of the form Lxg is said to be trivial.
The space of trivial infinitesimal Einstein deformations is denoted by J€D(g). An
infinitesimal Einstein deformation h is said to be essential if it is orthogonal to
TED(g). The space of essential infinitesimal Einstein deformations is denoted by
E€€D(g). We can use the following lemma due to M. Berger and D.G. Ebin as the
definition of E€D(g).

Lemma 1.4 ([4]). Let (M,g) be an Einstein manifold. An h € I'(S? T*M) is an
element of EED(g) if and only if h satisfies

(11) (A+2L)h=0, 6,h=0, trgh=0.
We have the decomposition of closed spaces

(12) £D(g) = £€D(g) & TED(g),

with E€D(g) finite dimensional.

Definition 1.5. Let (M, g) be an Einstein manifold. The subset of Einstein metrics
in the Ebin slice # (cf. [12]) at g is called the local premoduli space of Einstein
structures and denoted by P .M (g).

The local moduli space is &.#(g)/Isom(g), but it will be more convenient to
work with the local premoduli space.
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1.2.2. Deformation of spinors. We will need the machinery due to J.P. Bourguignon

and P. Gauduchon [6] for describing variations of spinor bundles and spinors under

metric variations and applied by M. Wang [42] to study Killing spinor variations.
Let P = Lgo(n) be the bundle of oriented orthonormal frames on (M, g). A spin

structure is a double cover P. Given a symmetric, with respect to g, automorphism
a:TM — TM we have a new metric

g*(XY) =gla™'X,a”Y).
If P* is the bundle of g*-orthonormal oriented frames, o : P — P* is SO(n)-
equivariant, and gives an isomorphism
Y= P XSpin(n) Sn i X = Pa XSpin(n) Sn

Let a(t) be a smooth path of symmetric automorphisms with a(0) = 17/, and

&+ Killing spinors for g®®,
Vgt((t)&t =cX t &t-
Set oy = a(t)~1(6¢), then in terms of the original spin bundle

(13) V?((t)at =ca(t) H(X) - oy,
where ?3‘(@) =a(t)"to V?{(t) o &(t).

A deformation of the Killing spinor og is a path («(t), o) satisfying
(14) LE(a(t), o) (X) := VDo, — ca(t) " (X) -0, = 0.

We will make use of the twisted Dirac operator
(15) D:T(TMERY) > T(TME®Y).
Decomposing into irreducible representations of Spin(n)

TME{RYE=X6 E%,

where X 3 is the bundle coming from the kernel of Clifford multiplication p : T'®
S, — S,. The component of D on X 3 is the Rarita-Schwinger operator

(16) Q:F(E%)—)F(E%).
If ¥ € T'(¥3s) then DU = QU if and only if 6,¥ = 0.

3
3
We define tensors W(%o0) @Fo0) ¢ T(T*Mg @ X) for B : TM — TM and
oo € T'(2):
(17) w(Bo0)(X) = B(X) - o9
(18) 0P (X) =Y " ei(Vif)(X) - o0,
where X € TM and {e;} is a local orthonormal frame. If 8 is symmetric, tr, 8 = 0,
and §,8 = 0 then Y (B.o0) @(B.o0) ¢ I‘(E%). And if o¢ is a Killing spinor, then
5,0 Po0) = §5,0F00) = .
Differentiating (I4) at (L1ras,00):
Proposition 1.6 ([42]).
1 1
dLe (6, 6)(X) = Vox — eX6 +ca(X)og — 5 D el Vid)(X)oo + 59(86, X)ao.

K2
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Iftry(c) = 6& = 0, then dL°(d&, &) = 0 if and only if Vxo = cX& and DW(%00) =

new(@:00),
For 8 : TM — TM g-symmetric, define h(X,Y) = —2¢(8(X),Y).

Proposition 1.7 ([42]). If try 8 = 68 = 0 and D¥P70) = cnW(B:20)  then (A +
2L)h =0 where (Lh);; = Rikjlhkl.

So h € F(S2 TM ) is an infinitesimal Einstein deformation.

Definition 1.8. An infinitesimal deformation of the Killing spinor og is a pair
(8,0), B: TM — TM symmetric and o € T'(X), satisfying:

(i) o is a Killing spinor with constant c,
(”) trgﬁ = 5ﬁ = 0,
(iii) DW(F:00) = pew(B.00),

The following result will have applications for the existence of eigenvectors of Q.

Proposition 1.9 ([42]). Let (M, g) be spin with nonzero Killing spinor og. Let
h € EED(g), and define § : TM — TM by h(X,Y) = —2¢(B(X),Y). Then we
have an eigenvector of Q of either eigenvalue cn or ¢(2 —n), that is

(i) DU B:00) = new(Boo0) and B is an infinitesimal deformation of g, or

(ii) ©F:o0) — 2cp(B:o0) £ () gnd

D(OF70) — 2cp(:70)) = ¢(2 — n)(H70) — 2cg(Fr00)),

Let (M, g) be Einstein, then the Einstein premoduli space .4 (g) C Z, where
Z is a finite dimensional real analytic submanifold of the slice .#; [2I]. The bundles
¥, and equation (1) depend real analytically on ¢’ € Z. Define NgJC (resp. Ng_,)
to be space of solutions of () for ¢’ € Z and ¢ = % (resp. ¢ = —3). Since (@) has
injective symbol dimg¢ N;E, is upper semi-continuous. See for example [20, Lemma
4.3]. We will see by example that it is not locally constant as in the case of parallel
spinors.

1.3. Sasakian manifolds.

1.3.1. Sasakian structures. The Killing spinor deformations we consider are of the
non-exeptional cases of Sasakian and 3-Sasakian manifolds in Table [l See [7] or
the monograph [§] for more on Sasakian geometry.

Definition 1.10. A Riemannian manifold (M, g) is Sasakian if the metric cone
(C(M),g), C(M) := Ry x M and § = dr?® + r%g, is Kdhler, that is § admits a
compatible almost complex structure J so that (C(M),g,J) is a Kdahler structure.
Equivalently, Hol(C(M),g) C U(m), where dim M =n = 2m — 1.

It is convenient to identify M with {r = 1} = {1} x M C C(M). A Sasaki
structure is a special type of metric contact structure. Traditionally the Sasakian
structure on M was defined as a metric contact structure (g, 7, &, ) satisfying an
additional condition called normality, which is an integrability condition, where 7
is a contact form with Reeb vector field £ and ® is a (1, 1) tensor. Here £ and 7 are
restrictions to M of

(19) §=Jror, (X)= 5E.g
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on C(M), which are given the same notation. It follows from the latter formula
that

(20) n =d°logr,

where d¢ = /—1(0 — 9). One can show from the warped product structure of
(C(M), g) that ¢ is Killing and real holomorphic. If w is the Kéahler form of g, then

_ 1 2 _ 1 c, .2

w= 2d(7° n)—4ddr .
we also have

L. o Lo
(21) w= 2d(r n):rdr/\n+§7“ dn.

Let D C T M be the contact distribution which is defined by

(22) D, =kern,
for x € M. There is a splitting of the tangent bundle 7'M
(23) TM =D ® L,

where L¢ is the trivial subbundle generated by £. The tensor ® € End(T'M) is
defined by ®|p = J and ®(£) = 0. Since ¢ is Killing one can show that & = V¢.
We denote the Sasakian structure by (g,7, &, ®).

The vector field £ + /=17, is holomorphic on C(M), thus it defines a holomor-
phic action of C*, the universal cover of C*. The intersection of each orbit with
M C C(M) is an orbit of the action of £ on M. Thus the orbits define a trans-
versely holomorphic foliation % on M called the Reeb foliation. If £ generates a
free U(1)-action, then the Sasakian structure is regular. The Sasakian structure is
quasi-regular if it generates a locally free U(1)-action, and irregular if not all the
orbits are compact.

The foliation % together with its transverse holomorphic structure is given by
an open covering {U,}aeca and submersions 7, : U, — W, C C™~! such that
when U, N Up # () the map

DB = T3 O7'd';1 : Wa(Ua ﬁUﬂ) — W,@(UaﬂUB)

is a biholomorphism.

Note that on U, the differential dm, : D, — Tr.@)Wa at x € U, is an iso-
morphism taking the almost complex structure J, to that on Ty (,)Ws. Since
€ 2dn = 0 the 2-form $dn descends to a form wl on Wy. Similarly, g = Zdn(-, ®-)
satisfies Lgg?T = 0 and vanishes on vectors tangent to the leaves, so it descends to
an Hermitian metric g. on W, with Kéhler form wl. The Kihler metrics {gl}

and Kihler forms {wZ} on {W,} by construction are isomorphic on the overlaps
D8a - To(Ua N U,@) — WB(UQ N UB)'

We will use g7, respectively w”, to denote both the Kihler metric, respectively
Kahler form, on the the local charts and the globally defined pull-back on M.

If we define v(%¢) = TM/L¢ to be the normal bundle to the leaves, then we can
generalize the above concept.

Definition 1.11. A tensor U € I'((v(F¢)*)*? Q v(F¢)®1) is basic if Ly ¥ = 0
for any vector field V e T'(Lg).



DEFORMATIONS OF KILLING SPINORS 11

Note that it is sufficient to check the above property for V = ¢. Then g7 and
w? are such tensors on v(.#¢). We will also make use of the bundle isomorphism
7 D — v(%), which induces an almost complex structure J on v(.%¢) so that
(D, J) = (v(F¢),J) as complex vector bundles. Clearly, J is basic and is mapped

to the natural almost complex structure on W, by the local chart dm, : D, —

Tfra(m)Wa-
To work on the Kihler leaf space we define the Levi-Civita connection of g7 by
(24) vTy — me(VxY) if XY are smooth sections of D,
X T me([V,Y])  if X =V is a smooth section of Le,

where ¢ : TM — D is the orthogonal projection onto D. Then V7 is the unique
torsion free connection on D 2 v(F¢) so that VTg” = 0. Then for X,Y € I'(T M)
and Z € I'(D) we have the curvature of the transverse Kéhler structure

(25) RY(X,Y)Z = VYVyZ - ViV Z - Vix v Z,

and similarly we have the transverse Ricci curvature Ric” and scalar curvature s7.

We will denote the transverse Ricci form by p”. From O’Neill’s tensors computation
for Riemannian submersions [34] and elementary properties of Sasakian structures
we have the following.

Proposition 1.12. Let (M,g,n,&,®) be a Sasakian manifold of dimension n =
2m — 1, then
(i) Ricy(X,€) = 2m —2)n(X), for X e (TM),
(i) Ric’ (X,Y) = Ric,(X,Y) +2¢7(X,Y), for X,Y € (D).
In particular, if (M, g,n,&, ®) is Sasaki-Einstein, then by [LT20 it has Einstein
constant n — 1, that is

(26) Ricy = (n — 1)g.
Note that (26]) is equivalent to (C (M), g) being Ricci-flat, since
Ricg = Ricy —(n — 1)g.

1.3.2. 3-Sasakian structures. Recall that a hyperkahler structure on a 4m-dimensional
manifold consists of a metric g which is Kéhler with respect to three complex struc-
tures Ji, Ja, J3 satisfying the quaternionic relations J1J; = —JoJ; = J3 etc.

Definition 1.13. A Riemannian manifold (M, g) is 3-Sasakian if the metric cone
(C(M),g) is hyperkdhler, that is § admits compatible almost complex structures
Jo, @ =1,2,3 such that (C(M), g, J1, J2, J3) is a hyperkdhler structure. Equiva-
lently, Hol(C(M)) € Sp(m).

A consequence of the definition is that (M, g) is equipped with three Sasakian
structures (g, n;, &, ®;), ¢ = 1,2,3. The Reeb vector fields & = J;(rd,), i =1,2,3
are orthogonal and satisfy [¢;,&;] = —2e¥F¢;,, where €9F is anti-symmetric in the
indicies 7,7,k € {1,2,3} and €'?® = 1. The tensors ®;, i = 1,2,3 satisfy the
identities
(27) (&) = e7r
(28) P0®; = —0,;1+F0, 4,2



12 CRAIG VAN COEVERING

It is easy to see that there is an S? of Sasakian structures with Reeb vector field
& = 1€ + Tebo + T3€3 with T € S%

The Reeb vector fields {&1,&2,&3} generate a Lie algebra sp(1), so there is an
effective isometric action of either SO(3) or Sp(1) on (M, g). Both cases occur in
the examples in this article. This action generates a foliation Z¢, ¢, ¢, with generic
leaves either SO(3) or Sp(1).

If we set D; = kern; C TM, v =1,2,3 to be the contact subbundles, then the
complex structures J;, ¢ = 1, 2,3 are recovered by

(29) Ji(roy) =&, Ji

Because a hyperkiher manifold is always Ricci-flat we have the following.

b, = ;.

Proposition 1.14. A 3-Sasakian manifold (M, g) of dimension 4m —1 is Finstein
with Finstein constant A = 4m — 2.

We choose a Reeb vector field &1, fixing a quasi-regular Sasakian structure, then
the leaf space %, is a Kéahler orbifold Z with respect to the transversal complex
structure J = ®;. But it has in addition a complex contact structure and a fibering
by rational curves which we now describe. The 1-form n¢ = g + /—1n3 is a (1,0)-
form with respect to J. But it is not invariant under the U(1) group generated
by exp(t€1). We have exp(t& )*n® = €2V Ttp¢. Let L = M xy() C, with U(1)
acting on C by e~2V~=1* This is a holomorphic orbifold line bundle; in fact C(M)
is either L™! or L™% minus the zero section. It is easy to see that each of these
cases occur precisely where the Reeb vector fields generate an effective action of
SO(3) and Sp(1) respectively. Then 7° descends to an L valued holomorphic 1-
form 6 € T(QMO(L)). It follows easily from (28) that dn® restricted to Dq N kern®
is a non-degenerate type (2,0) form. Thus 6 is a complex contact form on Z, and
0 A (df)™~ € T(Kz ® L™) is a non-vanishing section. Thus L = K;%.

Each leaf of .F¢, ¢, ¢, descends to a rational curve in Z. Each curve is a CP' but
may have orbifold singularities for non-generic leaves. It is also well-known that
restricted to a leaf L|gpr = O(2), the degree 2 line bundle on a generic smooth
leaf, while O(2) is interpreted as an orbifold line bundle when the leaf has orbifold
singularities. The element exp(5&2) acts on M taking &; to —&;, thus it descends
to an anti-holomorphic involution ¢ : Z — Z. This real structure is crucial to the
twistor approach. Note that ¢*6 = 6. This all depends on the choice &; € S? of
the Reeb vector field. But taking a different Reeb vector field gives an isomorphic
twistor space under the transitive action of Sp(1).

2. KILLING SPINOR DEFORMATIONS ON SASAKI-EINSTEIN MANIFOLDS

2.1. Deformations of transversal complex structures. Let (M, g,n,&,®) be a

Sasakian manifold. Then the Reeb foliation (%¢, J) has a transversely holomorphic
structure. The existence of a versal deformation space for (F, J), fixing the smooth
structure of .7, was proved in [I4] and [I8] using arguments similar to those in [22].

Let AF = I‘(Ag’k ® v(Z)10) be the space of smooth basic forms of type (0, k)

with values in v(.Z)1?. We have the Dolbeault complex
(30) 0— A° 2o A1 Ooy p2 o

Here (30 is the basic version of the complex used by Kuranishi [22] whose degree one
cohomology is the space of first order deformation of the complex structure modulo
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diffeomorphisms. Likewise, the first order deformations of (%, J) modulo foliate
diffeomorphisms are given by H!(A®). As in [22] there is an open set U C H(A®)
and the versal deformation space V C U is the germ of #~1(0) where 6 is an analytic
map
HY(A%) 5 H2(A%).

Proposition 2.1. Suppose (M, g,n,&, @) is Sasaki-Einstein (just Ric? > 0 is
sufficient). We have H?(A®) = {0}, so the versal deformation space is smooth,
Uc HY(A®).
Proof. The basic version of Serre duality gives

H2(A%) = H7 = (D(AY" @ A7) = 0,

where the second equality is given by by Kodaira-Nakano vanishing, since Agn_l’o <
0 and (m—3)+1=m—2 < m—1. The proof of Kodaira-Nakano vanishing in [19]
goes through in transversally Kahler case using the transversal harmonic theory
of [15]. O

Since Ric? > 0, the obstruction to lifting a deformation J;, ¢t € U, to a defor-
mation of Sasakian structures vanish.

Proposition 2.2. Let (M, g,n,&, ®) be Sasaki-Einstein (or just Ric? > 0 is suffi-
cient), then after possibly shrinking U, the deformation J;, t € U, lifts to a smooth
family (ge,me, €, @), t € U, where ®; induces the transversal complex structure J;.

Proof. We first show that the basic Dolbeault cohomology Hl?’k = Hgb (AY*) = {0}.
This can be proved using Kodaira vanishing as above or from the Weitzenbock
formula on 1 € Qg’k

k
(31) 2A5b1/}6¢1...6¢k = ZT‘/’al...ak + Z(QT)ﬁ’Y Ricgjﬁ wal---ajfl’_yaj+1---ak’
j=1

where AT = (VT)*V7 is the transversal rough Laplacian. Then if 1 is harmonic
and Ric” > Ag” then integrating (BI)) gives

02/ (VT VT) + kX, ) g,
M

where (-,-) is the Hermitian product and p, = ﬁn A (3dn)™1

=0.
v By [13] there is a family of transversal Kihler metrics with Kéhler forms w! on
(Z¢, J¢) depending smoothly on t € U with wl = w’. The above argument shows
that after shrinking U the Dolbeault groups on (Z, J;) also satisfy Hl?, ’tk = {0}.
Since the harmonic space H{QAZ% E of the transverse Laplacian Aéb,t with respect to

Therefore

w!', has constant dimension, by for example [20, Lemma 4.3] there are isomorphisms

R; : 3{25 — IJ-CQAS depending smoothly on . There exists smoothly varying
b bt

a € IHQAB so that Ri(ay) = [wT — wl]p, the harmonic component. Let G be the
b

Green’s operator for Ay . Let 8; = d*G(w/ + Ri(a;) —w™), and define n; = n+ f;.

Then 2dn; = w{ + Ry(a;) which is of type (1,1) and is positive definite for small
enough t.
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The family of Sasakian structures (g¢,n;, &, ®;) is defined by lifting .J; to kern;
to get @y, while

1
(32) gt = §d77t('a Qi) + 1 @1

O

Remark 2.3. With the assumption ¢ (%, J;) > 0 made in this article, the defor-
mations in Proposition along with transversal Kéhler deformations

i=n+dy, ®=0-(Riod,

for ¢ € Cp°(M) basic, give all local deformations of the Sasakian structure fixing
the Reeb vector field. See [40] for details.

Since a Sasaki-Einstein structure is transversally Kahler-Einstein by Proposi-
tion [[LT2IH] a necessary condition for a compatible Sasaki-Einstein structure is that

(33) wer(Fe, J) = mw?.

It follows from the proof of Proposition 2.2 that if ([B3]) holds for (M, g, 7, &, @), then
the family (g¢, ne, &, @), t € U, also satisfies

mer(Fe, Ji) = mwi .

We consider some properties of a first order deformation through Sasakian met-
rics which will be used later. We differentiate (32]) and use the notation

Jo=1, oT=¢, and ¢T=h

where we have

(34) dn = 2¢.
Since w! (X,Y) = g{ (J;X,Y), we have
(35> Qbaﬁ =V _1ho¢6 + Iaﬁ

(36) 6oy =V Th;,

Note that since I anti-commutes with Jg, it only has components IaB and Iaﬂ .
In addition differentiating

(37) 9f (i X, Y) +g{ (X, J;Y) =0
gives
(38) 2v/ —lhag + (Iaﬁ + Iga) =0.

Finally B3) and (3]) give

1
(39) bap = i(IaB - I,@a)'
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2.2. Skew-Hermitian Einstein deformations. By Proposition[[T2Mlif (M, g,n, &, )
is Sasaki-Einstein then the transversal Kéhler metric g7 on % is Einstein
Ricyr = 2mg”.

We define the space EED(g7) just as in Section [LZ.I] using the transversal Levi-

Civita connection defined in ([24]), that is
EED(g") ={h eT(S*Ty M) | tryr h =6,0h =0, (AT +2L")h = 0},

where L7 is defined as in (I0) but with the transverse curvature R”.

Given h € F(S2 Ty M ) we decompose h into its Hermitian h g and anti-Hermitian
ha parts with respect to the transversal complex structure J on v(Fe), ie.

We denote by €Dy (gT) (resp. EEDa(g?)) the space of Hermitian (resp. anti-

Hermitian) essential infinitesimal Einstein deformations. The following is an adap-
tation of results of N. Koiso [20] to the current situation.

Proposition 2.4. Suppose (M,g,n,&,®) is Sasaki-Einstein. Then we have the
decomposition

(40) £eD(g7) = EEDu(g") ® EEDA(gT),
and h € 1"(82 Ag’l) is an element of EED a(gT) if and only if
(41) Vihgy = Vihay =0

(42) (V')hag = 0.

Proof. Suppose h € I‘(82 Ag’l). If h* denotes raising the second index, then hf €
A'. We have the Weitzenbdck formula

(43) DpOyh* 4 D3 0pht = %(ZT +2L7)ht.

Suppose h € €€D(g7). Then (AT +2LT)ha = 0 and (@3) implies d,7ha = 0.
Trivially, tr,r ha = 0. Thus hy € E€D(g”) and (@) follows.

It follows from (@3) that h € ['(S* Ay') is in E€D 4(g7) if and only if @I) and
(@) hold. O

Let 3% denote the k-th harmonic space of the complex (B0).

Corollary 2.5. Let (M,g,n,&,®) be Sasaki-Einstein. Then there is a canonical
isomorphism

HL, = €&Da(gh)

haB — — _1haB .

Proof. First note that from Proposition 24 and formula @3] we have a decompo-
sition

(45) j{}q = g{.];l,s D g{.];l,Av

into symmetric and anti-symmetric parts. If ¢ € .’Hh’ 4 then L¢ = 0. Thus {@3)

shows that A”¢ = 0, and we have V7 ¢ = 0. Lowering an index gives an harmonic
b5 € Qg’z. Since M is Sasaki-Einstein ([BI]) becomes

205,655 = AT a5 + 4mo 3.

(44)
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Since all but the last term are zero, ¢a3 =0. (|

Lemma 2.6. Let (M,g,n,&,®) be Sasaki-Einstein and h' € 1"(S2 Tb*M) an ele-
ment of EED A(gT). If h = 7*h™ is the pull-back of the basic tensor hT to M then
he EED(g).

Proof. First note that the O’Neill tensor of the local projection 7w onto the leaf
space of the foliation .#¢ is

(46) AxY =g, VxY)E = —g(®X,Y)¢, X, Y eT'(D).

We will use the formulae of O’Neill on the curvature of a Riemannian submersion.
See [5l ch. 9] for more details.
If X,Y,Z,W € T'(D) are basic vector fields, then we have

(47)
g(R(X,Y)Z,W) = g"(RT(X,Y)Z,W) + 29(®X,Y)g(®Z, W) + g(®X, Z)g(®Y, W)
- g((I)Y, Z)g(q)Xa W)v

(48) g(R(X,Y)EW) = g(X, W)g(Y,§) — g(X,§)g(Y, W).
A routine calculation shows that
Ar(X,Y) =" (ATAT)(X,Y) + 4h(X,Y) — 2h(DX, DY),
Ah(¢, X) = —26hT (9 X),
Ah(€,€) = —2trhT.

We compute from [{7) using an orthonormal frame {eq, ..., eam—_2,&} that
(49)
Lh(X,Y) =r* (L") (X,Y) + > [2g(<1>X, ei)g(®Y, e;) + g(®X,Y)g(Pei, e;)
i
— g(Pe;, Y)g(PX, ej)} h(e;, e;)
=" (LTh")(X,Y) + 2h(®X, ®Y) + h(PY, PX)
= (L"hT)(X,Y) — 3h(X,Y).

And {@8) easily gives

(50) Lh(X,&) =—g(&, X)trh+ h(§, X) = 0.
It follows from the above equations that
(51) (B+2L)h =" (BTHT) + 20 (LTAT),
and dh = 0, tr h = 0 are trivial. O

Remark 2.7. It is clear from the proof that a non-zero h = 7*h” is not an
infinitesimal Einstein deformation if A7 is not anti-Hermitian.
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2.3. Infinitesimal deformations on Sasaki-Einstein manifolds. From Propo-
sition 2.4l and Lemma 2.6 for any 8 € HY, we have h® € E€D(g), where WP (X,Y) =
gT(JBX,Y). We define as in Section [LZ2A V79 (X) = a(X)og, where a = — 3 (h?)?
and oy is Killing spinor.

Proposition 2.8. Let (M, g) be a spin Sasaki-Einstein manifold admitting the 2
defining Killing spinors oj, j=0,1. If B € HY, then the corresponding basic anti-
Hermitian symmetric tensor hP is an infinitesimal Einstein deformation of g, and
(a,0), a = —%(hﬁ)u is an infinitesimal deformation of the Killing spinors o; for
j=0,1.

Remark 2.9. The definitions of h?, W57 and « are made to agree with the
identifications made in Corollary 2.5l and Section [[.2.2)

Proof. That h” is an infinitesimal Einstein deformation follows from Lemma
In the proof we denote (k) by h which can be considered to be a basic tensor
with values in D = kery and ®h = —h®. By Proposition [[.Glit is sufficient to prove

(52) > ei (Vih)(X)o; = 2ch(X)o;, forall X € TM, j=0,1.
for a local orthonormal frame {es, ..., ean_1} for which we may choose e; € I‘(D)
fori=1,...,2m—2, ep_14; = Pe; fori =1,...,m—1 and egy,—1 = £. We extend

to an orthonormal frame on C'(M) by setting es,, = Oy-.
Define an Hermitian frame by e, = \/iﬁ(ea —+v—1Jes), a=1,...,m—1 and

Em = \/ii(egm_l —v—1Jeam_1) = \%(5 +1/=109,). Denote their duals by £* =
%(ea ++v/—1Je,) and define e5 = &,. Note that ez = .

Since Hol(g) C SU(m) the spinor bundle ¥ of M can be identified, on the neigh-
borhood of the frame, with A® Spang{es|la = 1,...,m} = ATC(M)|nr, or
A°% Spang{e,|a = 1,...,m}. Clifford multiplication is given by e; + e;eam, 1 <
1< 2m —1 (or e; — —e;eap, giving the other Clifford module structure on X).

If m is even we take ¥ = A Spang{e o = 1,...,m}. If m is odd, then we
take ¥ = A°¥Spanp{e.|a = 1,...,m} when considering oy € I'(X), and ¥ =
A" Spanc{eq|a = 1,...,m} when considering o9 € I'(X). In the latter case we
take Clifford multiplication to act through e; — —e;ea,, in order to obtain the same
Clifford module structure on ¥ (in this case ¢ = —3).

The Killing spinors are locally oo = a(z) € I'(A°) and o1 = b(z)e1 A -+ A ey €
F(Am), where a,b are smooth functions.

Note that for XY € F(D) basic

Vyh(X) = Vyh(X) 4+ g(Vy (hX),€)¢

(53) = VLR(X) = g(h(X), BY)E.
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Thus
(54)

2m—1 2m—2

Z €; (Vlh) (X)O'j =

=1

D~ (VIR (X)o; + E(Veh) (X)oj + 3 cig(Bh(X), er)éo;
= % ei(VIh)(X)o; + 26Qh(X)o; + Ph(X )éo;

i=1

2

ei(Vih)(X)o; — ®h(X)éo;.

We will show that the first term on the right of (54]) vanishes. First suppose X = ¢,
then

2m—2

55) Z ei(Vih)(X)o; = ni e*(VL h)(ey)oj + “i e*(VL ) (ey)o;
i=1 a=1 a=1

= gavz;hfg@aj + aavghvgsﬁoj.
If j = 0, then this vanishes since €500 = 0. Suppose j = 1, then the first term on
the right of (B3 is
EO‘VZ:h,,BeBal =Vhse%P o
= Z (Vzhm — V"ghw)sasﬂol =0,
a<fB

because of {I). And the second term on the right of (B3 is

(56)

savghvaaéal = Vghlgvsasﬂol
(57) = VEhgy (—ePe® — 2g(c%, 7))o
= —2(V") " hayo1 =0,

because of ([@2)). The case of X = €5 is completely analogous.

We have

2m—1 2m—2

Z el(Vlh)(ﬁ)aj = — Z eih(q)el-)aj

i=1 i=1
2m—2

(58) = - Z e;h(De;, ex)exo;
i,k=1
2m—

2
= Z h(fbei,ei)oj = O,
i=1

for j = 0,1. The last two equalities follow because h(®-,-) is symmetric and anti-
Hermitian.
We have that
2m—1
(59) > ei(Vih)(X)o; = —®h(X)So;, for X € TM.

i=1
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Recall that Clifford multiplication is X - 0; = X0,0;, for X € TM with our
representation space, unless o; has ¢ = —% in which case we must take X - 0; =
—X0,0;. It is easy to check that

(60) - ‘bh(X)gO'J = h(X)@Taj, ] = 1, 2.
Then ([B2) follows from (E9) and (G0) and the Proposition follows. O

2.4. Infinitesimal deformations on 3-Sasakian manifolds. Recall the impor-
tant result of H. Pedersen and Y. S. Poon that 3-Sasakian structures are rigid.

Theorem 2.10 ([35]). Let (M,g), dimM = 4m — 1, be a 3-Sasakian manifold
with Killing spinors o;, @ = 0,...,m. Then any Einstein deformation (M, g:)
of g with compatible 3-Sasakian structures, i.e. preserving the existence of the
i, 1 =0,...,m, is trwial. That is, there exists a family ¢¢ of diffeomorphisms of
M with ¢fg. = g.

The transversal space %, for any fixed Reeb vector field £ € S?, is an orbifold Z
with a complex contact structure. Recall that the twistor spaces for any two & € S*
are isomorphic via the transitive action of Sp(1) on the S? of Reeb vector fields.
We denote by H (€) the harmonic space of the particular £ € S%. Although, the
Y (€), &€ € S?, are isomorphic they give different deformations h® € E€D(g), B €
34 ().

The proof of Theorem 2.I0, and the earlier similar result [24] of C. LeBrun,
follow mainly from the vanishing of H'(Z, O(L)). We have

HY(Z,0(L)) = HY(Z,Q*"Y(K,;' @ L)) = {0}

by Kodaira vanishing, since Kgl QL > 0.
The following provides a spinor version of this vanishing result.

Proposition 2.11. Let (M,g), dim M = 4m — 1, be a 3-Sasakian manifold with
Killing spinors 05, j =0,....,m. If B € f]-(}q (&) is nonzero, then the corresponding
basic anti-Hermitian symmetric tensor h® is an infinitesimal Einstein deformation
of g, and (@, 0), a = —3(hP)* is an infinitesimal deformation of the Killing spinors
oj for j =0,m, but never for any nonzero o € Spanc{o;lj=1,...,m —1}.

It will be convenient to introduce some notation. Given ¢ € N, we change
notation and write the formula in Proposition as

(61) Lla,0)(X) = —% Zei - (Via)(X)o + %Q(X)U, for all X € TM.

Then the proposition asserts that £(«,0) =0 for 0 =0, j = 0,m and L(a,0) # 0
for nonzero o € Spanc{o;lj =1,...,m —1}.

Proof. We consider a local orthonormal frame which is in the Sp(m)-structure of
C(M)
(e1,€2,... eam) = (f1, Juf1, o fr, Jsfis fo, Jufo oo fms J1fm, T2 s T3 fm),

where e1,...,e4m—4 € Mi=123D; = D, frn = =&, J1fm = &, Jofmm = —&1 and
JSfm = ar'
We define an Hermitian frame by ¢, = %(620‘,1 —v—1J1e90-1) = %(620‘,1 -

V—1lean), @« = 1,...,2m, and their duals e* = 5 = &,. In particular, we have
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Eoam—_1 = %(—{g —v/—1&) and e, = \%(—{1 —+/—19,). As in the proof of Propo-
sition 2.8 the spinor bundle of (M, g) can be identified with ¥ = A*TH0C(M)|y =
A Spang{e,|a=1,...,2m}.

Define the “symplectic form”

(62) w = 2520471 N Eoq-
a=1
The Killing spinors on (M, g) can be identified with

1 k ev
=@ eT (AT C(M)), k=0,...,m.

From the proof of Proposition 2.8 a Killing spinor o}, is preserved to first order by
the Einstein deformation h if and only if

O

2m—1 2m—1
(63) > eVINX)or+ Y e VEWX)ok + &010(X)oy, = 2ch(X )y,
a=1 a=1

holds for all X € D;. Here ¢ = %

Define ¢ € Q%(L) by Y = h%ﬁv. Since 6 is holomorphic ¢ = 0. The line
bundle L has a natural hermitian metric by the identification L = K;i, so there
is a natural connection on L. Then

9 = —VTPys

(64) :
= —h3"V?0, =0,

where the second equality holds from V77 hB'Y = 0. For the third equality observe
that V0, lifts to the form dn® = g(®a-,-) ++/—1g(®3-, -) restricted to Dy, but h?Y
is symmetric and so the contraction is zero.

Therefore 1 € Q%1(L) is harmonic. But as we observed, H'(Z,O(L)) = 0, so
1 = 0. Tt follows that A(X) € D for all X € TM. This fact will be used repeatedly
in the rest of the proof.

Substituting & = \_/—%(azm + e55,) and 0, = %(sgm — €5,5,) into (63) and
canceling terms gives

(65)

2m—1 2m—1

> e VINX)or+ Y eVELX)or—v/=1vV21(X)" egm+V=1V2h(X) egy = 0.
a=1 a=1

We saw in the proof of Proposition 2.8 that
aoT a—T 5
eV hpye? =e*Vzhge? =0,
so (68) becomes
2m—12m—1
(66) Z Z VEhg eV o — V=1V2h(ep)eamor, = 0, for X = ep,
a=1 ~=1
2m—12m—1

(67) Z Z VZhBﬁao‘aﬁak + \/—1\/§h(5[§)527n0k =0, for X = ¢3.

a=1 ~=1
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Define 9 = 22171 €2a—1 N €24, then we have

1 1
(68) O = — gk + 9T A €oam—1 N\ Eam-

k! (k—1)!
The second term of (68 is

VTV e =~ ey (o) 59

V=12V2
Te—1)

V—12V2
CE]

A (h(eg) 29) AR~

Eoam N ‘I>Qh(5ﬁ) AN 9k

Note that every term of (69]) contains eg,, but does not contain £,,—1. The terms
of the first component of (GG which also contain g, but not 9,1 are

2m—1
(70) Z Vgh52m716a62m710’k.
a=1
We simplify ([7Q) to get
2m—1 2m—1
Z Vghmm,leo‘st*lak = Z —h(Eg,V?EEmel)SaEQmilak
a=1 a=1

2m—1

=V=1V2 Z h(eg, Paez)e®e®™ Loy,
a=1

= —V/=1V2®3h(ep)e?™ Loy,

V122
(k- 1)!

(71)

@gh(aﬁ) A9EL A Eom-

Together the terms of (G6) which contain e, but not ea,,_1 are

V2

(72) 1)

Eam N (I)Qh({:‘ﬁ) A9FTL
We claim that (72) is non-zero for 1 < k < m — 1 when ®3h(eg) is non-zero. But
this follows because ¥ is a complex symplectic form on D. Thus h(eg) = 0.

A similar argument will be carried out with (@7). The second term of (7)) is

\/—_1\/§h(63)62710'k = %h(sg)(ﬁkl A 52m71)
(73)
— %h(%) AI*E A Egpm .

The terms of the first component of (7)) which contain 9,1 but not eo,,, are

2m—1

(74) > Vihggmme®e®™ oy

a=1
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We compute

2m—_1 2m—1
Z VZhBMEQEQm—lok = Z _h(‘EB?vZEm)EaE%n_lak
a=1 a—1
2m—1
= _1\/5 Z g(h(gﬂ)7(1)2€a)5 e oy,
a=1

vV —1\/§q)2h(83)62m_10'k

= \/__%\/55277“1 A ((I)Qh(‘g?) 2 9%)
V122
= o

V—12V/2
TEor

(75)

Eoam—1 N ((I)Qh(EB) J19) N A

Eom—1 N h(&'B) A PR

Combining (73]) and (0] give
V-14V2
(k—1)!

We have for X € I'(D'?) that the component of £(c,0})(X) containing ea,,
but not €g,,,—1 is —% of ((2)). Since these terms are linearly independent, for o =

S akow, £(e, 01)(X) = 0 for all X implies h = 0. O

(76) Eoam—1 N h(EB) A\ 91,

The proof involved determining the component of (6I]) with the spinor compo-
nent containing precisely one vector in Spanc{eam—1,&2m }. This is given in (72)
and (Z6). This component is preserved under changes of the frame used in the
calculation. This will be used later in Section 1] where more details will be given.
It will be useful that this component is

(77) — B (X)) -0 — h(X)D, - 0.
3. INTEGRABLE DEFORMATIONS OF KILLING SPINORS

We consider the integrability of the infinitesimal Einstein deformations h® €
EED(g) for B € H! from the last section. We will also consider the integrabil-
ity of infinitesimal Killing spinor deformations. This is essentially the problem of
deforming Sasaki-Einstein metrics. We give some sufficient conditions for integrat-
ing these infinitesimal deformations. A deeper sufficient condition for deforming
Sasaki-Einstein metrics is K-polystability (see [40]), but here we merely give some
sufficiency results using analytic methods.

3.1. Integrability on Sasaki-Einstein manifolds. We state a result from [39]
giving a sufficient condition for deforming Sasaki-Einstein structures. Let (M, g, 7, &, P)
be a Sasaki-Einstein structure, and let G C G’ = Aut(g,n, £, ®) be a compact sub-

group. We consider G-equivariant deformations of the foliation (%, J). We have
the G-equivariant Dolbeault complex

(78) 0 A% Doy gl Py g2y

with AY, = 1"(/&2”C @v(F)H0)C the subspace of G-invariant sections. Then H'(Ag,)
gives the first order deformations of (F¢,J) preserving the action of G. We saw
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in Proposition [Z.]] that the versal deformation space U is smooth. The space of G-
equivariant deformations UY C U is a submanifold with tangent space H!(Ag,) C
H'(A). With respect to a fixed transversal Kihler structure we have the G-invariant
harmonic space H}; , and H'(A%) = H} .

If (Z¢, Ji)iev is a G-equivariant deformation, then one can show as in Propo-
sition that there is a family of Sasakian structures (g¢,n:, &, @), t € V, with
G C Aut(gs, ms, &, @¢) where ®; induces the transversal complex structure .J;. Ar-
guments using the implicit function theorem can show the following.

Theorem 3.1 ([39]). Suppose (M,g,n,&, @) is a Sasaki-Finstein manifold. Let
G C Aut(g,n, &, ®) be a maximal torus, and let (Fe, Ji)iev be a G-equivariant
deformation with V smooth. Then after possibly shrinking V, there is a family
(9t,m:,&, D), t €V of Sasaki-Finstein structures with (go, 10, &, ®o) = (9,1,&, D)
and with ®4 inducing the transversal complez structure Je.

This implies the following in terms of Killing spinors.

Corollary 3.2. Let (M,g) be a spin Sasaki-Einstein manifold admitting the two
defining Killing spinors o5, 7 = 0,1, e.g. M is simply connected. Then the infini-
tesimal Einstein deformations h®, for 3 € :HJICL,GW integrate to a family gy, t €'V C
C?, d = dim¢ J{hyc, of Einstein deformations preserving oj, j =0, 1.

The components in EED(g) of {v(g:) | v € To'V} are precisely the original infin-
itesimal Einstein deformations {hP | B € Hyat

Proof. Just the last statement remains to be proved. Consider the family (g¢, n:, &, ®4), t €
V of Proposition Using the notation of Section 2] and differentiating in the
direction of some v € TV we have

(79) Pap =0
(80) ¢a3 = \/—_1ha5
(81) haﬁ = \/__IIQB;

which follow from (39), (36) and (B3] respectively. In the proof of Proposition [2.2]
the basic cohomology class [w] ] is constant. Thus ¢ is an exact (1, 1)-form. We may
replace n; with 7y 4+ d“yy, so that using the same notation we have %dﬁt =¢=0.
The possible contact forms for a fixed Reeb vector field £ and transversal complex
structure J, are n; +d°i, +df, for basic functions 1, 6, € Cpe(M). See [39, Lemma
2.2.3], where we also use that Ric? > 0, which implies that the basic cohomology
H} = H'(M,R) = {0}. And db, is given by a gauge transformation exp(6:&)*n,
which fixes basic tensors. Therefore, by adding a factor of df, to ., we may arrange
that 7, = 0. We assume that the family (g¢, ¢, €, @), t € V is chosen so that 7, = 0
at t = 0. Thus the only component of ¢; at t =0 is hag = \/—_11043 € EED(g).
Recall that if ¢ € Cy°(M) is sufficiently small there is a Sasakian structure
(Gt,0, Mt,w5 &5 Dt ) With contact form 7, = 1 +d°y and transversal complex struc-

ture J;. The metric is
1 —
Jtp = §d77t,w('a ) + Ny @ N

and ®, , is the lift of J¢ to ker Nt
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Theorem B3] is proved by using the implicit function theorem to find 1y €
Cpo (M), t €V, so that the Sasakian structure (g¢ y, Nt,u, &, Pr.y) has scalar curva-
ture s¢ 5, = 0. We review enough of the proof of Theorem [Blto prove the corollary.
For more details see [39].

We consider the G-invariant Sobolev space L}, (M), k > m, of k + 4 times
weakly differentiable functions. For ¢ € L2 44.6(M) small we have the Sasakian
structure with metric g; 4 as above. We have the space of holomorphy potentials
3}, for this metric where g is the Lie algebra of G (cf. [39]). Using the metric g;
to define the L? inner product on L3 (M) we have the orthogonal decomposition

Lig(M) = V=1H]} , & Wiy,
and the projections
my Ly (M) = V=1H? |, and 7", : L3 (M) = Wity
The reduced scalar curvature of g; y is given by
(82) S = Moo (5t,0) = (1 =70y ) (st.0)-
Let U C V x L{,, (M) be a neighborhood of (0,0) so that for (t,4) € U,
(Gt M5 &, e yp) 1s well defined. For U = U N (\7 X Wk+470) we define a map

I I W,
(83) () =l (s5,).

The derivative of (&3) is
(84) dS : Wiya0 = Wi,
with dS(ij}) = —2|L91/'1. Here L, is the self-adjoint operator
Ly = %Aﬁw + %(RicT, dd“) + %(dw, dsg).
As proved in [39, Cor. 4.2.5] there is a family v, t € U, with
(85) 8(t,ve) = mp’ (siy,) = 0.
Since g; € EED(g) it is easy to check that %sﬁo =0 at t = 0. Then differentiating

[85) at t = 0 gives —20 44 = 0. But (84) is an isomorphism, so ¢); = 0 at ¢t = 0.
Therefore at t = 0 we have §;,5, = ¢ which is hag = V—11p € EED(g). O

We will give an application of Theorem in Section

3.2. Integrability on 3-Sasakian manifolds. We can prove integrability of many
of the transversal infinitesimal deformations on a 3-Sasakian manifold. The infin-
itesimal deformations of the real subspace Re 3} (£) C HY (€) with respect to the
real structure ¢ : K (&) — H2 (¢€) induced by the anti-holomorphic real structure
¢ : Z — Z integrate to Einstein deformations preserving the existence of precisely
two Killing spinors.

Theorem 3.3. Let (M, g), dim M = 4m—1, be a 3-Sasakian manifold, and denote
by o;, i =0,...,m the Killing spinors associated to the 3-Sasakian structure. Then
the infinitesimal Einstein deformations h® of g for B € Re HY (€) in Proposition[Z.8
integrate to a family g;, t € N C R, d = dime HY, of Einstein deformations of
g preserving oo and o, but not the remaining. The components in EED(g) of
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{v(g:) | v € ToN} are precisely the original infinitesimal FEinstein deformations

{n° | B €39}

Corollary 3.4. Let (M,g), dimM = 4m — 1, be a 3-Sasakian manifold with
d = dim¢ H'(A®). Then g has a d-dimensional family of non-trivial deformations,
{g: | t € N C R}, where g¢, t # 0, has a compatible Sasaki-Einstein structure but
no 3-Sasakian structure.

Recall that the quotient of M, dim M = 4m + 3, by the action of Sp(1)-action
generated by {£1,&, &3} is a quaternion-Kéhler orbifold (M, §), dim M = 4m. If
m > 2, this means there is a three dimensional bundle § C End(T'M) which is
locally spanned by almost complex structures JAl-, i = 1,2, 3 satisfying the quater-
nionic identities which is preserved by the Levi-Civita connection of §. This is
equivalent to the existence of a 1-integrable Sp(m)Sp(1)-structure on M. The
O’Neill formulas of the submersion 7 : M — M show that (M, §) is Einstein with
constant A = 4m + 8. If m = 1, every oriented manifold satisfies this with J = AZ.
A 4-dimensional quaternion-Kihler orbifold (M, §) is defined to be oriented and
satisfy W = 0 and Ricy = Ag.

We will consider a weaker condition, that of a quaternionic structure (cf. [37]).

Definition 3.5. A quaternionic structure on M, of dimension 4m, m > 2, is
a three dimensional subbundle § C End(TM ) which is locally spanned by almost
complex structures Ji,i=1,2,3 satisfying the quaternionic identities and preserved
by a torsion-free connection on TM. This is equivalent to the ewistence of a 1-
integrable GL(m,H) Sp(1)-structure.

If m =1, then a quaternionic structure is defined to be a conformal class [g] with
an orientation on M satisfying W[?;] =0.

Part of the interest in quaternionic manifolds is due to an attractive twistor
correspondence [36]. If (M ,d) is a 4m-dimensional quaternionic manifold, then the
twistor space is Z = P(E) where E is the locally defined complex 2-dimensional
bundle associated to the complex 2-dimensional representation of the Sp(1)-factor
of GL(m,H) Sp(1). Then Z is a 2m + 1-dimensional complex manifold with a fam-
ily of twistor lines CP! with normal bundle Ocp (1)®2™ and an anti-holomorphic
involution ¢ : Z — Z preserving the real twistor lines. Conversely, if Z is a
2m + 1-dimensional complex manifold with a family of twistor lines CP* with nor-
mal bundle O¢p1 (1)®?™ and an anti-holomorphic involution o : Z — Z, then a
connected component of real twistor lines is a 4m-dimensional manifold with a
quaternionic structure. Since the twistor correspondence is natural, if (M,J) is a
quaternionic orbifold we may define the twistor space over each uniformizing chart
as for manifolds and quotient by the orbifold group.

We say that a diffeomorphism of a quaternionic manifold(orbifold) F : M— M
is a quaternionic automorphism if the derivative of F' preserves the bundle J, or
equivalently preserves the GL(m,H) Sp(1)-structure. The following is essentially
different proof of a result of C. LeBrun [26, Corollary C], but we need to consider
the case in which (M, §) is an orbifold.

Lemma 3.6. Let (M, §) be a quaternion-Kdhler manifold or orbifold whose associ-
ated 3-Sasakian space M is smooth. If (M, g) admits a quaternionic automorphism
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which is not an isometry, then (M, §) is locally isometric to HP™ with the symmet-
ric metric. Thus (M, §) = \HP™, T' C Sp(m +1).
Proof. Let M — M be the Sp(1) or SO(3) orbifold bundle with M the 3-Sasakian
space associated to M. Suppose there is such a quaternionic automorphism F' :
M — M, then F lifts to a diffeomorphism F : M — M which maps each &;, i =
1,2, 3 to itself and preserves the complex structure on the transverse space Z. The
complex contact form @ of Z lifts to n° = 1y + /—1n3. Since F : M — M is an
isometry if and only if the biholomorphism induced on Z is complex contact [25][32],
i = F*n° # n°. And C(M) has two holomorphic symplectic forms @ = d(r?n°)
and @ = d(r?7). If V is the Levi-Civita connection of (C(M),3), then Vw = 0.
Note that both w and @ are of order 2 with respect to the Euler vector field r0,..
Since Vj,0, = 0 and V,5 X = X for a vector field X on M viewed as a vector
field on C(M), it is easy to check that Vg, & = 0.

We have the following formula on a Kéhler-Einstein manifold with Einstein con-
stant A

(86) VAV §Bar0: = VPV 3@ a100 + 2ABayas-

Since A = 0 and @ is holomorphic, we have VAV 34,0, = ﬁﬁﬁﬁfvalw = 0.
Consider TC(M)|p as an Hermitian vector bundle on M and denote by V the
connection V restricted to M. Then V*V& = V*V& = 0 and

0— / (Ve &) g
M

= /MW@, V&) .

Therefore V& = 0. So the holonomy of (C(M), g) stabilizes two linearly indepen-
dent (2,0)-forms of maximal rank, and the holonomy of the universal cover C (M)
is reducible. It follows from [17, Prop. 3.1] that C(M) is flat. Thus M is isometric
to a space form I'\ S*™ 3, O

Proof of Theorem. Fixing a £ € S* we have the foliation (¢, J) whose transversal
space is the twistor space Z. There is a subspace N C U C H!(A®) of the versal
deformation space of (¢, J) of real deformations. These are the deformations J;
for which ¢(.J;) = —J;. By straightforward averaging one can choose the family of
compatible Sasakian structures in Proposition 22 (g¢, ¢, &, ®1) to satisfy

(87) Sg=g, Sm=-—m, wl=-§ P =-9,

for t € N. In particular, we also have ¢*w? = —wT. For t € N with respect
to (g¢,mt, &, ®¢) we have Re H(A®) = Re HY (€) for the tangent space to N at 0.
Therefore (F¢, J;) = (Z,J;) has a Kéhler structure wf, with w} € Zcy(F¢, Jo)
depending smoothly on ¢t € N and Ricci(wd) = 4mw{. Since the leaf space is an
orbifold we will denote the transversal Kéhler space by (Z, Jy,w;).

Let g be the Lie algebra of quaternionic automorphisms of (M ,§). By the twistor
correspondence, g = {X € hol(Z, Jo)|c. X = X }. Since g is a real form of hol(Z, Jo),
g ®C = hol(Z,Jo). By Lemma B8 g C isom(M,§,d). Thus g C isom(Z,wp, Jo).
Since (Z,wo,Jo) is Kihler-Einstein the results of Y. Matsushima [27] show that
isom(Z,wo, Jo) C g ® C is a real form, so g = isom(Z, wo, Jo).
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Recall that f € C*°(Z,C) is a holomorphy potential if

_ 9f - 0
0% f = O =Y Lo

0,J
is holomorphic. We define the space of normalized holomorphy potential functions,

(88) Hy:={f € C>(Z,C) | f is Hamiltonian and /f,ug =0}.

Suppose W € I'(T1°Z) is holomorphic with Re W = X € g = {Y € hol(Z, Jy) | s, Y =
Y}, so Lxw = 0. And let fir € C*°(Z) be a symplectic Hamiltonian, with
S, fwig = 0, that is

(89) X iw= de

Then

1 1 v—1
o fur = 3 (dfw + VLT dfw ) = 5 (X + V—-1X) = W

From 87) and B9) we have ¢*dfw = —dfw, and [, fw g = 0 implies that ¢* fyr =
— fw. Since H, is the complexification of the real functions fy considered, we have
that ¢*f = —f for all f € H,.

There are F; € C*°(Z) depending smoothly on ¢t € N with
(90) Vv _16t6tFt = Ricci(wt) — 4mwt.
Since F; is defined up to a constant, *F, = F;, 4+ ¢; for ¢ € ReN. But [(F, —
¢*Fy)tg, = 0, so ¢*Fy = Fj.

Define C*(Z)sym to be the Hélder space of functions f with ¢*f = f. The
Monge-Ampere equation

Wi + /=10, 0ppr) ™1
(1) W, 1) = tog (V=0T g, = R,
t

is ¢-invariant for t € Re N, and ¥ defines a smooth map
(92) T CM2%(Z)ym X ReN = CH(Z)gym
The differential of (@2) is
(93) D,¥(¢) = (—Az +4m)¢.
But it is a result of Y. Matsushima [27] that 3, = ker(Az — X), where A =
4m is the Einstein constant. Thus D,V¥ : CKF2:%(Z)sn — CF(Z)sym is an
isomorphism. By the implicit function theorem, after possibly replacing N by a
smaller neighborhood of 0, for t € N there is a ¢; € Ck+2’°‘(Z)Sym with U(¢;) = F,
and
(94) wé = w¢ + V —18t3tcpt
is Kéhler-Einstein. The well-known regularity results show that ¢; € C°°(Z)sym.
a1 _
Let 7 : My — Z; be the U(1)-bundle associated to either K7 or K ", de-

pending on whether (M, g) fibers over (M, §) with generic SO(3) or Sp(1) fibers.
Choose the connection form on M; to be 0, = n + dfp;. Then from ([@4) one has
1dn, = w,. We get a Sasaki-Einstein structure (g}, 7}, &, ®}) on M, where

(95) g = wi(, ®4) +np @,
and @} is the lift of J; to kermn,.
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By Theorem [ZT0lfor small ¢ € N, (M, g;) has no compatible 3-Sasakian structure.

It remains to prove that the components in EED(g) of {v(g:) | v € ToN} are pre-
cisely the original infinitesimal Einstein deformations {h” | 8 € H (¢)}. Consider
the family (g¢, n:, &, ®1), t € N of Proposition2:2l Using the notation of Section 211
and differentiating in the direction of some v € TyN we have

(96) $ap =0
(97) $o5=V—1h,3
(98) hap = V—1I,p,

which follow from (39), (36) and (B3] respectively. In the proof of Proposition [2.2]
the basic cohomology class [w{] is constant. Thus ¢ is an exact (1, 1)-form. We may
replace n; with n; + dy, so that using the same notation we have %dﬁt =¢=0.

The possible contact forms for a fixed Reeb vector field £ and transversal complex
structure J; are n; +d°i; +df; for basic functions 1, 0; € Cpo(M). See [39, Lemma
2.2.3], where we also use that Ric? > 0, which implies that the basic cohomology
H} = HY(M,R) = {0}. And db; is given by a gauge transformation exp(6:)*n,
which fixes basic tensors. Therefore, by adding a factor of df; to n;, we may arrange
that 7.715 =0.

We suppose now that we have chosen (g¢,n:,&, ®¢), t € N as such. Thus the
only component of h is hag = v/—11,4, which is a transversal infinitesimal Einstein
deformation. Differentiating (@0) gives

V —181;3th =0.
Then differentiating (@I)) with respect to t gives

and it follows that ¢; = 0 at ¢ = 0. Therefore (g;,n;, &, ;) gives the same first
order Einstein deformation at ¢t = 0 as (g, 7¢, &, ®¢) which is hag = v —11ag. O

4. DEFORMATIONS ON A 3-SASAKIAN MANIFOLD

4.1. Space of Deformations on a 3-Sasakian manifold. The space of Einstein
deformations on a 3-Sasakian manifold constructed in Section [2] has an interest-
ing structure. Suppose (M, g) has a 3-Sasakian structure with Reeb vector fields
€1,&0, &3 satisfying [, €] = —2¢%¢;, and space of Reeb fields S*.

For ¢ € S% and 8 € 3! (€) we define h?¢ € EED(g), where WP¢(X,|Y) =
gT(JBX,Y) where we distinguish the particular Reeb vector field. We have the
following space of infinitesimal Einstein deformations

(99) ED(g) =D {h**| B eHL(E)} C EED(y)
£€e8S?

We have a left action of Sp(1) on (M, g) generated by &1, &2, &3. Since Sp(1) acts
by isometries and on the space of Sasakian structures S?%, it acts on £ (g9), and all
the subspaces HY (€), € € S?, are isomorphic. The subspace HY (&) is preserved by
&1, so by elementary representation theory

dimg £2(g) = 2dime £P(g) > 6 dime Hy (£1).

This Sp(1)-action acts on (C(M), Jy, J2,JJ3) by quaternionic automorphisms.
That is, it preserves the bundle of quaternionic frames Lgy(m)sp(1)(C(M)). This
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lifts, via the spin structure to an action on isp(m)sp(l)(C(M)) C Lspin(am)(C(M))
if m is even or Lgy(m)xsp(1)(C(M)) C Lepin(am)(C(M)) if m is odd. The Killing
spinors are contained in the 7, factor of S}, of (B). Thus Sp(1) acts on the Killing
spinors via the representation of Sp(1) = SU(2) on 7, = S?(us).

We will consider a principal subbundle E' C Lgp(m)sp(1)(C(M)) with structure
group (Sp(m —1)x Sp(l)) Sp(1) generated by all the local frames considered in the
proof of Proposition 2Z-T1l This subbundle is invariant under the isometric Sp(1)-
action. In order to determine the Sp(1) action on spinors we consider the spin
bundle

_ 7 +
2= B (s m1)xsp() sp(1) SAm-
Importantly, the subspace of spinors, considered in the proof of Proposition 2.11]
with precisely one vector in Spang{€2m—_1,€2m} is preserved by (Sp(m —1) x
Sp(1)) Sp(1).

The Sp(1) action on E is easily computed. Given a € Sp(1) and u € E, write
a,u = u(a), then

¢(a) = ((- kak™"),a) € (Sp(m — 1) x Sp(1)) Sp(1)

is the factor acting non-trivially on the component of spinors with one vector in
Spanc{e2m—1,&2m - It will be useful that the spin bundle has the decomposition
([©) with the Sp(1)-action acting on the v, Ym—2, . .. factors in the usual way with
Ym being the space of Killing spinors.

We will need a lemma in the proofs of the main theorems.

Lemma 4.1. Suppose £,& € S®. If € # & and € # —¢', then

{n% ] B e 3O} N {n¥ | B e HU(E)} = {0},

Suppose thatm = 2, &, &, &3 € S? are linearly independent, and §; € HL(&),i=
1,2,3 are non-zero. Then

RB1:E + hB2:E2 + }B3:E3 £ 0.

Proof. Let o,k =0,...,m be the Killing spinors as in the proof of Proposition [Z.11]
which span the representation 7, of Sp(1). More precisely, v, = S2(C?) where
we identify Sp(1) =2 SU(2). And under this identification each oy, is identified with
(7]’;) e’fegl_k where e, e5 are the standard basis of C2. By acting by Sp(1) we may
suppose that & is ;.

By Proposition 2.11] the elements h?¢ preserve the spinors corresponding to the
span of e* and eJ' but not the remaining. Let g € SU(2) be such that g = ¢'.
Then the elements k7€’ preserve precisely the spinors g(ef") and g(e§*). This is the
same subspace as that spanned by ef” and e3® if and only if g is in the subgroup
generated by the elements

u 0 0 1
{O ﬂ} , such that |[u| =1, and J= [_1 O] .

This is precisely the subgroup fixing £; € RP?.
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For the second part recall that - is a real representation, with real Killing
spinors
so=1+e1ANegANegNey
(100) g1 =11 Nea+1ez3Ney
G =1—1e61 Nea Neg Ney.
Again we may assume that &; is the standard Reeb vector field, thus h%1€ preserves
oo and o3. Suppose & = a&y and & = b&; where a,b € Sp(1). By assumption

Spang {0, 02} NSpang{acp, acs} is 1-dimensional, and let o be a non-zero element.
Then o ¢ Spang{bog,bos}. Then

L(hﬁlél + P22 4 hﬁayéavg) — L(h53’53,0’) £0
by Proposition 2111 O

Proposition 4.2. Let (M, g) be 3-Sasakian with dim M = 4m — 1. Suppose £, £’ €
S? with € # & and € # —¢'. And suppose B € HY (&) and B € I (€') are non-zero,
then
WE 4+ e e £9(g)

is non-zero and preserves a 1-dimensional subspace of Killing spinors if m = 2 and
no Killing spinors if m > 2.
Proof. We may suppose that ¢ = & and £ = cos(t)&; + sin(¥)&2, 0 < t < 7, after
possibly transforming by Sp(1). Then & = exp(37).&. Set a = exp(im) € Sp(1).
By Lemma BT h%¢ + h#' € #£ 0. Set hy = hP¢ and h#' ¢ = ahy with hy € F (&1).
Suppose

0=L(h*¢ + 14 6)(X) = L(hy + ahy,0)(X)

(101) = L(h,0)(X) + al(he,a o) (a o X).

The component of interest in this is given by (77) which is

(102) — P 1W(X)& 0 —h(X)0, -0 — DN (X)E -0 — N (X)D, -0,

where for shorthand h = hy, h' = h#'% and ® = cos(t)®; + sin(t)®,. Here
0 = cooo + -+ + ¢m0Om, is an arbitrary Killing spinor.

We consider the case m > 2 first. We compute (I02) using the notation in the
proof of Proposition 211} In particular,

1
(k—1)!
The first two terms of (I02) with o = oy, are
2v2y/~1

(k—1)!
The second two terms are
(104)

1 _
O = E'&k + gkt NEoam—1N\Eoam.

(103) (9" A o (X) O A g + 9 AR A eamo1).

—cos(t)

V2

Vv—1sin(t)

— (cos(t)®1h'(X) + sin(t)®2h' (X)) (

V-1
W(EQm — E2Tn)O'k.

(e2m +e2m) +

- W(X)

7 (e2m—1 — €57=1)) Tk
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After a routine computation we get that (I02)) with o = oy, is

— -2 /T 2
_ Vil\/zsm O 1 ()10 A eyt + —15{\/5;;)'8 ) A Dol (X)10 A gy A 941
J— 2 - i 2
—\/12\/_2CO'S(t)hI(X)1,O A Ezm_lﬁk—l _ —Vl\/gsnl'(t)(l)2h/(X)l,O A Eoam_1 A 19](}—2
(k—1)! (k—2)!
# 2O )0y, gyt 4 DEIOC g )10 g
2v/2sin(t) cos(t) ., 10 g1, V2sin(t)cos(t) o 10 k—2
TG T Aen AT T T B ) A s
n \/55111(]:') cos(t) Boh! (X)0 A o A 9F + \/55&1;1(15)20)?8(15) B (X)Y0 A Py A 92
— .2 — 2
_ Vil\/zsm ) 1 (X)10 N gy ¥ — YLV ZS(E) (1];/5 8'21; O (x)40 A 2ym p 942
+ %;%{?th(xﬂxo A eom AOFT 4 7”(];121\)/%@)1’0 Aeom-1 AOFL

Consider the image of a general Killing spinor o = cgog + - - - + ¢y, under ([I02).
In particular, consider its component of degree 2k + 2 given by this formula for
0 <k < m—2. From the esm and e9,,—1 components we get the following
equations after some manipulation:

0 = cx(V2sin(t)®'H (X))
+ cpy1(2V2cos? (H)R' (X)) — 2v/2sin(t) cos(t)Psh/ (X)) + 2v2h(X))
+ Cry2(V2sin(t)®'h' (X))
and
0 = cx(V2sin(t)®'n' (X))
+ 1 (—2V2 cos® (t)h' (X) + 2v/2sin(t) cos(t)@zh’ (X) — 2V2h(X))
+ cpya(V2sin(t)®'h/ (X))

From these we get ¢ + crpy2 = 0 and cpy1(cos(t)®'h/(X) + ®1A(X)) = 0, which
implies cxy+1 = 0 from Lemma Il This implies 0 = 0 when m > 2.

If m = 2 then we have ¢; = 0 and ¢y + ¢ = 0. So the only possible Killing
spinors preserved by h%¢ + hP"E are spanned by the real spinor . And one easily
sees that £(h? ¢, ¢) = 0 since exp(tk)sy = <. O

Recall that 75 is the real representation of Sp(1), and easy calculation shows
that the standard basis of sp(1) acts as follows in the basis <, <1, s2

0 0 2 0 0 0 0 -2 0
i=|0 0 0|l,j=10 0 2|.k=1[2 0 o
-2 0 0 0 -2 0 0 0 0

Proposition 4.3. Let (M,g) be a 7-dimensional 3-Sasakian manifold. Suppose
€1,69,63 € S? are linearly independent and B, € 5—(}4 (&k) k =1,2,3 are each non-
nonzero. Then

pPLEL | pPaste | pBsgs o ED(g)
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is non-zero and preserves no Killing spinors

Proof. By Lemma Bl hP¢1 4+ pP2€ 4 pP3:83 s non-zero, so we need to show it
preserves no Killing spinors.

For simplicity we assume that &,k = 1,2,3 is an orthonormal basis, which
we may assume to be the standard basis after a possibly acting by Sp(1). By
considering the Sp(1)-action on 72, we see that H1 (&2) preserves g1, ¢ and HY (&3)
preserves ¢p, 1. Let 0 = cogp + 161 + 262, and denote hék = hPr:& Then suppose

0 =L(RP14 4 pP282 4 pPsts )
=1 L(hP%1 q1) + coL(hP252 o) + e L(hP258 &)
(105) =— 1 (®1h% (X)& -1 + A5 (X)D, - 1)
— co(P2h*2(X)& - 60 + A2 (X) 0, - <o)
— co(P3h® (X)Es - 2 + A% (X)0r - ©2).
Routine calculation gives
SRS (X)Er -1+ B (X)Dy - 61 = 2V2(Doh® (X) 10 A ey + WS (X)M0 A e3)
Poh® (X)Es - <o+ 2 (X)0y - o = 2V2V—1(®2h% (X) 0 Aeg + A2 (X)M0 Ney)
B3h& (X)Es - 62 + 7% (X)0y - 62 = 2V2(®2h% (X) 0 A ez — 153 (X)H0 A ey)
Thus we have
0= — c12V2(Pahf (X)10 A ey + hE (X)H0 A g3)
— c02V2v/ =1 (P2h%2 (X)) A eg + A% (X)H0 A gy)
— 22V2(Doh% (X)10 A ey — b3 (X)H0 A gy).
The €3 component gives
c1®175 (X)) — co®ah®2 (X) 4 co®3h% (X) = 0.
Lemma [£J] now implies that cg = ¢; = c3 = 0. O

This proves Corollarydl By Theorem B3 for any 3 € Re M1, (¢) the deformation
h?¢ is integrable. By Proposition for m > 2, and Proposition for m = 2
there are elements in the span of these elements preserving no Killing spinors.

4.2. Toric 3-Sasakian manifolds. The examples of toric 3-Sasakian 7-manifolds
from [9] provide interesting examples of Einstein deformations, integrable and in-
finitesimal, preserving various numbers of Killing spinors. This will give non-trivial
examples of the theorems of the previous sections.

Definition 4.4. A 3-Sasakian manifold (M, g), dim M = 4m — 1, is toric if there
s al™ g AUt(M797§l7§27§3)'

Remark 4.5. Note that a toric 3-Sasakian manifold is generally not toric as a
Sasakian manifold.
The isometry group of a 3-Sasakian manifold is

Aut(M797§17§27§3) X Sp(l) or Aut(Magaglag%éé) X 80(3)5

where the Sp(1) or SO(3) factor is generated by the Reeb vector fields.
Toric 3-Sasakian manifolds have been constructed from 3-Sasakian quotients
by torus actions on S**~! [7, [9], with the 3-Sasakian structure given by right
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Cbzfl

T3
[TQ X Sp(].)/ Rb2—1

T3 % Zy

FIGURE 1. Space of Sasaki-Einstein metrics

multiplication by Sp(1). A subtorus 7% C T" is determined by a weight matrix
Q,n € Mat(k,n,Z). There are conditions on 2, C. Boyer, K. Galicki, B. Mann, E.
Rees, 1998 [9], that imply the moment map

e S4n71 N (’Lk)* ® [R3
is a submersion, and further that the quotient
M, , = 5" ))T" = p=(0)/T"

is smooth. When n = k + 2 the above authors showed there are infinitely many
weight matrices in Mat(k,n, Z) for k > 1 giving infinitely many 7-manifolds Mg, ,
for each by = k > 1.

Lemma 4.6 ([38]). Let Z be the twistor space of a toric 3-Sasakian 7-manifold M,
then HY(Z,0z2) = HY(Z, @Z)T2 and

dime¢ H(Z,07) = bo(M) — 1 =k — 1.
Thus Z has a local ba(M) — 1-dimensional space of deformations.

If by(M) > 1, then the maximal torus of Sasakian automorphisms, 73 C Aut(M, &),
is 3-dimensional. Theorem [3.I] implies the following.

Theorem 4.7. Let (M, g) be a toric 3-Sasakian 7-manifold. Then (M, g) has a 3-
dimensional space of Killing spinors spanned by oo, 01,02. Then g is in an effective
complex bo(M) — 1-dimensional family {g:}ien, U € C2MD=1 with g4 = g, of
Sasaki- Finstein metrics where g; is not 3-Sasakian for t # 0.

Therefore the deformations preserve a two dimensional subspace of Killing spinors
spanned by og, o3.

The deformation space of Sasaki-Einstein metrics with their isometry groups is
illustrated in Figure [1

For a given ¢ € S?, the space of infinitesimal Einstein deformations {hB€ | B e
HL ()} C €ED(g) integrate to Einstein deformations preserving Killing spinors
oo and o2 but not ;. Note that the space &%(g) defined in ([@9) is spanned by
integrable Einstein deformations. Theorem 2l now follows from Proposition .2l and
Proposition [4.3]
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